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A FRACTIONAL POWERS-OF-TWO NUMBER
SYSTEM FOR DIGITAL NEURAL NETWORKS

J.J. Cupal, B.M. Wilamowski, R.S. Sandige, and J.J. Miller*

Abstract

A new arithmetic number system based on fractional powers of two
is proposed. In this system, the weight of each bit position is a power
of 21/", where 1 = 1,2,3,4 ... Multiplication or division by 21/ can
be accomplished by simple shifts of the input data. Although not as
simple as in conventional twos complement binary, addition and sub-
traction can be accomplished using simple ALU structures. Details
of how this is accomplished are given, as well as an implementation of
hardware structure to perform multiply-accamulate operations com-
monly found in neural nets and FIR filters. Applications of this
arithmetic system in binary neural networks are also given.

Key Words
Neural networks, hardware, arithmetics
1. Introduction

Many recent achievements have been recorded in the rela-
tively new area of research in neural networks. New learn-
ing algorithms, new system structures, and many useful
applications have been found. Neural network hardware
implementations are also a current focus, and it is obvious
that better hardware implementation could enhance neu-
ral network development. A neuron must perform a series
of multiply-accumulate operations, which can be done in
analog hardware or in digital computer systems. For many
applications, the input signals are in digital format and the
analog technique of implementing a neural network is pro-
hibitive. Therefore, an all-digital approach must be taken
[1-3]. Because the multiply instructions in a micropro-
cessor require many system clocks, neural networks. im-
plemented in a digital computer operate relatively slowly.
One can speed up the multiply instruction with the addi-
tion of dedicated hardware, but this requires extensive real
estate in silicon. One can also use logarithmic arithmetic
[4, 5], resulting in fast multiplication (simple addition of

the logs), but addition and subtraction are more difficult
to do. Another approach is to use the shift operation in-
stead of multiplication [6]. In the case of conventional twos
complement binary systems, such multiplication is coarse.
Only multiplicands with a value of powers of two are pos-
sible, that is, 2, 4, 8, 16... or 0.5, 0.25, 0.125...

The purpose of this paper is to introduce a new num-
ber system to perform the arithmetic operations required
in sum-of-products algorithms. This system seems ideally
suited for applications where fast, but not necessarily ac-
curate, multiplications are required, as is the case for a
neuron in a neural network. Instead of binary numbers in
base 2, numbers in base 21/" are introduced. Using this
approach, fast multiplication and division are possible by
simple shifting of the input data. Section 2 introduces the
arithmetic system, some neural net applications are given
in section 3, and a hardware structure for a /2 number
system is given in section 4.

2. Concept of the Arithmetic

Consider a neuron that performs arithmetic using a differ-
ent number system. This number system is to be based
upon weights of 21/ (where n = 2,3,4...) instead of 2!, as
in a conventional binary number system. The use of such
a number system has lead to the design of simple neurons
with interesting features. For example, if n = 2, this new
number system is based upon powers of 1/2. In this case,
the representation for the number 7.4142; = V2+6or
(10110),/2 as shown in fig. 1.

In this numbering system, multiplication or division
by powers of /2 corresponds to the shift left or shift right
operation by one position as shown in fig. 2. Multiplica-
tion by (v/2)% = 2\/2 = 2.8284;¢ of the number 7.4142;¢
corresponds to a shift left by three places.

Addition (or subtraction) of two numbers in base /2

is similar to binary addition (or subtraction), with the dif-
ference that the carry coming out of the addition of any

V27| N2S [ N2S | 2t 2R | 22 2N | N2

or or or or or or or or == value
8V2 | 8 [4V2 ] 4 | 2v2 | 2 V2 1

0 0 0 1 0 1 1 0 V2+6=7.4142

Figure 1. The representation of 7.4142y¢ = \/2+ 6 in base /2 number system.
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two bits is added in two bit positions to the left as shown in
fig. 3. If the base is 91/n the carry is shifted by n. Because
of this somewhat unusual feature, it is possible to separate




8V2 | 8 |4v2| 4 [2V2 2

V2 1 value

0 0 1 0 1 1

= 6N2+2=10.4853

0 0 0 0 1 0

1 3V2+1=5.2426

Figure 2. Multiplication and division by /2 as done with
shifts in base (2 number system. The original value of the
number was 7.4142;9 = /2 + 6, as in fig. 1.

a number in the \/2 number system in two halves, one rep-
resenting the square root terms and the other representing
the integer terms. Addition (or subtraction) can be done
on each half in parallel, making this a faster process than
adding the whole value, as in conventional binary adders.
Fig. 4 shows an example of the addition operation.

represents the number of left or right shifts. This would
reduce the memory requirements to store the weights of
any given structure. This, plus the fact that fast multi-
plication can be performed by simple shifts of the input
values, make this new arithmetic an interesting technique
for applications in neural networks. The examples above

sV2 | 8 |av2| 4 [2v2] 2 | V2 1 value
A 0 | 1 1 [ o] 1 o | 1 | TN2+9
B 0 0 0 0 0 1 1 1 V243
carry | 1 | - | v v 1] 1] -] -
A+B 1 1 0 1 0 0 0 0 8V2+12
Figure 3. Addition of two numbers in base /2 number
system.
A A+B
0 1 1 1 Lol o 1 _ of (o] |o
1 o |0 1 ol |o 1 1 1 1 o| [o
N2 + 9 = 18.8995 3+ V2 = 44142 8V2 + 12 = 23.3137

Figure 4. Addition of two numbers in base /2 number
system. The top row represents the square root terms, the
bottom the integer terms. Addition is accomplished by
adding the separate representations.

In the example of fig. 5 showing the subtraction

of (00000111)/2 or (4.4142);0 from (01101011),5 or
(18.8995)10, each 8-bit number can be split into two 4-
bit components. Subtraction is accomplished by taking
the twos complement of both components of the subtra-
hend and adding these to the corresponding components of
the minuend. Note that the number (00000111), /> has two
components: (0001); X /2 and (0011); with the respective
twos complements (1111); x /2 and (1101);. Therefore
the twos complement in base /2 arithmetic of the number
(00000111),/5 is (11111011),2, which is not the same as
the twos complement in conventional binary logic.
Because multiplication or division is done by shifts,
the weights of a neuron could be stored as a number that

show arithmetics based upon 2!/" with n = 2. By using
larger values of n, we can reduce the “coarseness” of the
weights given in the examples.

3. Applications of the Arithmetic in Neural
Networks

To investigate the usefulness of this arithmetic system, sev-
eral neural nets were implemented and their behaviour was
studied. Simulations were run-on a 486 PC, using single-
precision floating point arithmetic. The applications given
here are Boolean in nature (i.e., a parity generator) with
bipolar desired output values. In all cases, neurons with
the bipolar sigmoid activation function given by equation
(1) were used:
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A B A+B
0 1 1 1 ~|o] [of |o 1 _
1| lo| [o] |1 ol o] [1] |1]
corresponds to
0 1 1 1 1 1 1 1 o] |1 1 0
1| ol lo] |1]F] |1 ol |1[T] lo] |1} (1] jo
V2 + 9 = 18.8995 -V2-3=-44142 6V2 + 6 = 14.4853

Figure 5. Subtraction of two numbers in base /2 number system.

2

f(net) = 1 + exp(—Anet)

(1)
where net is the sum of the weighted inputs of the neuron.
In this study, the gain factor of this activation function,
/2, was chosen to be equal to one.

The networks were trained offline by the conventional
back-propagation algorithm using floating point arith-
metic. The networks were allowed to converge from ran-
domly selected starting weights to some predetermined fi-
nal global error. The global error was defined as the RMS
error for all of the outputs for any given input vector, av-
eraged for all of the input vectors used to train the neural
net.

Once the networks were trained, each neuron was im-
plemented in the 9t/n arithmetic system where n could
vary from 1 to 16. The desired weights were rounded to
the nearest weight in the given number system. The net
term was then calculated and fed into the activation func-
tion. In these simulations, the activation function was im-
plemented in full precision floating point. In actual hard-
ware, this function would be implemented within a ROM
based lookup table.

Three different applications were investigated. The
first two were Boolean logic functions implemented in a
neural net. These had bipolar inputs as well as bipolar
desired outputs. The first of these was an odd parity gen-
erator, with four inputs, four neurons in the hidden layer,
and one output neuron. A training set of 16 input pat-
terns was used. The second was a multiple-output logic
function generator. It had four inputs, three neurons in
the hidden layer, and three output neurons. In this case,
a training set of nine patterns was used to train the net.
The functions generated were typical of Boolean equations
implemented in hardware.

Fig. 6 shows the global error for neural networks im-
plemented in the 21/% pumber system for the first two
cases. Two plots are shown for each case: one when the
networks were trained using floating point arithmetic to
an error of 0.1; the other for an error of 0.01. Ten training
runs were made, starting with randomly chosen weights.
In the process of converting the weights to the values al-
lowed in a particular number system, often fewer than ten
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distinct sets of weights resulted for a particular implemen-
tation. The curves show the data scatter, as well as the
average error found for each implementation.

The results shown in fig. 6 indicate that a neural net-
work implemented in a conventional binary number sys-
tem (n = 1) has considerable error. If these networks are
implemented in the square root (n = 2) number system,
this error drops dramatically, and drops even further in
the cube root (n = 3) system. For higher values of =,
the error approaches the error to which the system was
trained. Because implementations with higher values of n
require additional hardware, it is thought that sufficiently
accurate results could be obtained with either the square
root or cube root number system.

In the third example, a network was designed to de-
termine if points on the z,y plane are within a unit circle
centred at the origin. If a point was within a unit circle,
the desired output was +1; otherwise it was —1. The train-
ing set of this network consisted of 90 randomly generated
points within the range —2,—2 and 2,2.

A solution for this network was obtained if the net-
work had two neurons in the input layer, five in the hid-
den layer, and one in the output layer. As before, the net-
work was trained using floating point arithmetic. Fig. 7(a)
shows the decision surface of this neural net when imple-
mented in floating point. Ideally, it should be a cylinder
of radius 1 and height 1. Figs. 7(b), (c), and (d) show
the same network when it is implemented in the fractional
powers of two arithmetic with n = 1, n =2, and n =3
respectively. Again the results show that the implemen-
tation in the conventional binary number system has con-
siderable error, but the square root and cube root system
give a good representation of the floating point system.

4. Hardware Implementation of the Arithmetic

With the proposed arithmetic, multiplication or division
can be replaced with shift left or shift right operations.
Likewise, addition and subtraction operations can be per-
formed similarly as in binary arithmetic. The only differ-
ence is the necessity of independent operations on the n
components of the original number. These computations
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Solutions are shown for (a) floating-point precision and

are best performed in parallel using n separate ALU units.
Thus, it is desirable to use as low a value for n as possible,
yet still produce sufficiently accurate results.

There are several hardware configurations that could
implement the 21/™ arithmetic discussed above. It is ob-
vious that one shift register and at least two simple ALUs
that perform addition or subtraction (using twos comple-
ment) are required for the /2 arithmetic shown in the
examples. One such hardware model is shown in fig. 8.
It is intended to perform a multiply-accumulate operation
such as would be required in a neural network or FIR filter.

“The input values are twos complement binary numbers, in
this case 16 bits wide. The weights can be represented in a
6-bit number, in a form of sign-magnitude format. Actu-
ally, one bit is for the sign, another for the shift direction
(multiplication or division), and 4 bits are for the shift
count.

The input value is loaded into a 16-bit shift register
with the shift direction controlled by the direction bit of
the weight and the shift amount controlled by the most
significant 3 bits of the shift count. Shifting is done as in
normal twos complement data shifts—left shifts fill with
zeros and right shifts fill by sign extension. The result
of this shift process multiplies the input value by the un-
signed fixed weight.

The output of the shift register is fed into one of
two add/accumulate structures by the action of two 16-
bit multiplexers controlled by the least significant bit of
the shift count. If this bit is a one, indicating multiplica-
tion/division by /2, then the value is added to the accu-
mulator holding the /2 terms (represented as Resull_sq_rt
in fig. 8). If this bit is a zero, indicating multiplica-
tion/division by integer values, then the value is added to
the Result_int accumulator. Actually, the ALUs required
are somewhat simple, performing either addition or twos

complement subtraction as controlled by the sign of the
weight.
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Figure 8. A hardware model of an arithmetic logic cir-
cuit to perform multiply-accumulate algorithms in the /2
number system.

The hardware controller continues the multiply-
accumulate operations until all input values are processed.
At the conclusion, the result accumulators hold the square
root and integer sums. Because it is desirable to have
standard binary outputs, it is necessary to multiply the
value in the Resull_sq_rt accumulator by /2 and add this
result to the Resuli_int accumulator. This is done by
passing the value in the Resulf.sqrt accumulator back
through the multiply-accumulate structure with appropri-
ate weights to approximate multiplication by /2 (/2 =
1+1/44+1/8+1/32).




The hardware structure shown in fig. 8 has been im-
plemented in Verilog HDL. A 20 tap FIR filter structure
was demonstrated using all fractional coefficients. That
is, the coeflicients were not formed into integers as is often
the case when using integer multiplications within a mi-
croprocessor. As the coefficients are always fractional, the
direction bit in each weight is not required, meaning that
the weight could be stored in a 5-bit number or, perhaps
more appropriately, the extra bit could be used for storage
of a 5-bit shift count. -

It is possible to speculate as to the speed of the
structure shown in fig. 8. Assuming the shift register
can do multiple shifts in one clock cycle, it appears that
a multiply-accumulate operation could be done in two
clocks—one to load the input value and weight, the other
to shift the correct amount. The other devices (multi-
plexers, ALUs) are combinational in nature except for the
result registers that are clocked to store the accumulated
total as the new input values are loaded. To perform the
20 tap FIR filter mentioned earlier, 48 clocks are required
(20 % 2 plus 8 for conversion back to integer values). In
comparison, a conventional 16-bit by 16-bit multiply re-
quires 16 clock cycles. In this case, a 20 tap FIR filter
would require 340 clocks, assuming one clock to load each
data pair and 16 clocks to perform the multiply. Of course,
the actual times are dependent upon the actual structure
inplemented in hardware.

The structure shown in fig. 8 could be used in a FIR
filter or in a neural network structure if an activation func-
tion generator is added. For faster operation, this activa-
tion function would likely be implemented as a lookup ta-
ble in a ROM. If the application involves binary decisions,
this lookup table could be quite simple.

Parallel processing, which is natural for addition or
subtraction operations, also can be extended for an entire
layer. The structure of a neural network is such that all
signals in one neural layer can be processed at the same
time, thus allowing for parallel computation of all neurons
within a layer.

5. Conclusion

This paper has introduced a new number system based
upon fractional powers of two. It was shown that addition
and subtraction in this system could be done using simple
ALU structures, and multiplication and division by left or
right shifts of the input data. By introducing this base
21/ arithmetic, we significantly reduce the coarseness of
weights in comparison to normal base 2 arithmetic where
multiplication is substituted by shift operations. Simula-
tions show that for simple, binary-type neural networks,
a structure based upon the /2 number system produces
sufficiently accurate results.

The proposed arithmetic has several advantages: (1)
Multiple ALU units can provide parallel processing, re-
sulting in fast operation. (2) Because multiplication can
be done by data shifting, multiplication of an input value
by a constant weight can be accomplished faster than con-
ventional multiply operations within a computer system.
In fact, it may be possible to use a serial communication
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technique between neurons to further enhance multiplica-
tion speed and reduce the number of required intercon-
nections. (3) For most practical neuron applications, only
4 to 6 bits of memory are required to store each weight
value.

From the hardware implementation given in this pa-
per, it is obvious that an additional ALU and accumula-
tor are required for higher values of n. Our results show
that sufficiently accurate results can be obtained in neural
network applications with n = 2, that is, a 1/2 number
system.
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