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ABSTRACT

This paper presents a compact architecture for CMOS im-
plementation of a pulse-coded neural network with a cur-
rent controlled oscillator. A computational style described
in this paper mimics a biological neural system using pulse-
stream signaling and analog summation and multiplication.
Synaptic weights are multiplied by employing current mir-
rors and choosing proper W/ L ratios of output transistors
of the pulse-coded neuron cell.

1. INTRODUCTION

In the vertebrate nervous system, communication be-
tween distant neurons is accomplished using encoded pulse
streams. These biological neurons employ rapid pulses,
called action potentials, for long distance transmission of
signals. Neuron cells that fire action potentials typically
fire either continuously or in bursts of several action poten-
tials separated by quiescent periods. In biological neurons,
information is sent in the form of frequency modulated pulse
trains. The large fan-in and fan-out of most neurons, the
wide variation in synaptic weights, the presence of both ex-
citatory and inhibitory synapses on single neurons, and the
complexity of the convolution of post- synaptic potentials
make neurons computationally powerful devices.

Pulse-stream encoding technique [1]-[13] uses digital sig-
nals to carry information and control analog circuitry, while
storing further analog information on the time axis. Main
advantages of using a pulse-stream technique are that it is
immune to noise and less susceptible to process variations
between device.

A. Murray et al. [1] introduced a technique for generat-
ing pulses with a digital approach using a multiplexor and
handshake RTT/RTR control transmission lines. Murray
and A. Smith [2] developed a technique with a “chopping
clock” signal that is asynchronous to all neural firing. It
is logically “high” for exactly the correct fraction of time
to allow the appropriate fraction of the presynaptic pulses
through to multiply synaptic weights. Their weights, how-
ever, must be normalized for a proper operation. They also
utilized digital circuitry to accomplish their design for neu-
ral and synaptic functional blocks. G. Moon et al. [4]
introduced a neuron-type cell that encodes the information
into the form of pulse duty cycles. The neuron-type cell
structures three CMOS inverters for digitizing the pulse
waves, where a threshold level is determined by an inverter
logic threshold voltage. J. Meader et al. [5] presented a
frequency- modulated pulse-firing circuit with a synapse
electronic circuits using the threshold voltage of NMOS and
floating- gate FETs. The threshold voltage of a floating-

Basic Neuron Cell

Figure 1. Circuit schematic of the neuron and
synapse cells.

gate FET is adjustable in small steps via the application
of programming pulses between the control gate and the
substrate.

2. STRUCTURE OF A NEURON CIRCUIT

Inspired by biological models and advantages of hybrid
pulse-stream neural networks; a simple integrated circuit
structure for a neuron with synaptic weight multiplication
and summation is described in this section. The neuron cir-
cuit shown in Fig. 1 is an electronic analogy of a biological
soma; i.e., it initiates reactions, with a given external stim-
ulus, by generating a stream of electrical pulse waves. In
this case, the external stimulus is current. It also contains
a synapse cell at the output of the neuron cell. As can be
seen from the figure, the neuron cell consists of three MOS
transistors (M1-M3), a pair of active resistors (M4 and M5),
and a capacitor (C). The threshold level to the neuron cell
is determined by the voltage divider consisting of the ac-
tive resistors (M4 and M5). The neuron cell operates as
follows. In a steady state, transistors M2 and M3, which
form a “thyristor” subcircuit, are cut off. As the input I;n
increases in time domain, the charge on the capacitor, and
thus the capacitor voltage Vi, increases. When Vi reaches
a certain level and above, or when the gate voltage of M3
exceeds the threshold voltage, the transistors M2 and M3
change their state into active regions of operation and then
causes saturation of M2. The saturation time for M2, which
determines the output pulse width, is determined by the
discharge time of the capacitor through M3. Thus, the out-
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Figure 2. SPICE simulated characteristic of the

neuron cell circuit.

put starts to oscillate with a fixed height depending upon
the capacitance on the capacitor and the input level. More
specifically, the rate of the output oscillation increases as
the amplitude of the current input or the capacitor voltage
increases. Fig. 2 shows the SPICE simulated characteristic
of the neuron cell with a sinusoidal current input. As can
be seen from Fig. 2, the firing rate increases as the current
input level increases. The firing rate varies from zero when
net excitation lies below the firing-onset threshold to some
saturating value, which illustrates the basic characteristic
of nonlinear sigmoidal function normally seen in both bio-
logical and artificial neural networks.

There are two functions essential in a neural network —
multiplication and addition. In digital systems these are
well-defined functions, although they may be implemented
in detail in several ways. In analog and pulse-stream sys-
tems, there is more than one generic approach to each oper-
ation. The operation of synaptic weight multiplication and
summation in the proposed design can be achieved by an
additional current mirror structure (M6-M10) at the out-
put of the basic neuron cell, as seen in Fig. 1. For an
excitatory synaptic weight multiplication, p-channel MOS
current mirrors are used, and n-channel MOS current mir-
rors are used for an inhibitory synaptic weight multiplica-
tion in the circuit. The transistors in the proposed design
are not biased in the subthreshold region so that a signifi-
cant driving capability and faster signal processing can be
achieved. In the strong-inversion region, the MOS transis-
tors have a power-law dependence on the gate bias voltages.
For MOS transistors operating in the saturation region, the
drain currents are expressed using the quadratic approxima-
tion of Shichman-Hodges MOSFET model [14]. The W/L
ratios of the transistors in the synapse cell can be considered
as a variable for synaptic weight multiplication. Synaptic
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Figure 3. SPICE simulated characteristic of the
neuron cell with synaptic weight multiplication.
For this simulation, (Ws/Ls) = x (Wr/L7) and
(W10/L10) =—-1x (W7/L7).

weights are multiplied through the current mirrors and then
summed together either to obtain output pulse stream or
to apply to neuron cells on next neuron layer. Fig. 3 shows
SPICE simulation result of the neuron circuit with two ex-
citatory synapses and one inhibitory synapse.

3. EXAMPLE

In order to check the functionality of the neuron cell cir-
cuit design, a simple example is simulated with SPICE. An
oscillatory 3-neuron Hopfield recurrent network is tested.
Hopfield network [15] is a single layer recurrent neural net-
work in which every neuron provides input to all others
excluding itself. In addition, weights are symmetric; i.e.,
the weight of the synapse that connects the output of neu-
ron ¢ to the input of neuron j, w;;, is equal to the one of
the synapse connecting the output of neuron j to the input
of neuron ¢, w;;, with zero elements on the main diagonal
(wi; = 0 for ¢+ = j). For this 3-neuron Hopfield network
whose interconnection topology shown in Fig. 4, there are
2% = 8 possible input combinations. Let us assign a nor-
malized synaptic weight matrix W and an input threshold
vector Y as

0o 1 -1
w=|1 0 -1 (1)
-1 -1 0
0
Y=1|o0 (2)
0

Hopfield recurrent networks are particularly useful to solve
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Figure 4. Interconnection topology of the 3-neuron
oscillatory Hopfield network with the proposed cir-
cuit (NC - neuron cell; SC - synapse cell).

many optimization and linear programming problems. Ta-
ble 1 summarizes the stable steady states obtained for all
possible input combinations. Notice that the system either
converges to a pattern 001 or to its complementary pattern
110. Also note that the output is simply zero state and
generates no oscillations, as expected, when all the inputs
are not excited. This is simply the nature of the biological
and artificial neural network and its computation system.
The SPICE simulated transient response of the convergence
to patterns 001 and 110 is illustrated in Figs. 5 and 6, re-
spectively. Each one of them shows the input and output
voltages of one of the neurons The simulations of a logi-
cal exclusive-OR function and a parity-3 function are also
performed to verify the functionality of the proposed cir-
cuit design. The test results of these functions match the
expected values respectably, and the functionality of the
proposed circuit design is checked accordingly. Hence, it is
also anticipated that the circuit design can be extended to a
larger and more complex system and that it would function
accordingly as well.
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Figure 5. SPICE result of the 3-neuron Hopfield
network. Convergence to a pattern 001.
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network. Convergence to a pattern 1170.



Table 1. Simulation result of stable states for the
3-neuron oscillatory Hopfield network.

State# Input Pattern | OQutput Pattern
1 000 000
2 001 001
3 010 110
4 011 110
5 100 110
6 101 110
7 110 110
8 111 110

4. CONCLUSIONS

In this paper the CMOS hardware design to realize weight-
ing and summing signals in our pulse-coded neural network
with a current controlled oscillator has been introduced.
In particular, a novel design and implementation of pulse-
stream neural cell with synaptic weighting and summing
capability is presented. Synaptic weight multiplication and
summation are achieved by proper W/ L ratios of MOS tran-
sistors of the output current mirrors in the neuron circuit.
The neuron circuit which has been developed here exhibits
functional similarities to natural biological neurons. Our fu-
ture goal is to develop programmable synapse circuits based
on the proposed original structure.
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