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Abstract

This paper presents a compact and power efficient architecture for CMOS realization of a current-driven pulse-stream
artificial neural network. The computational style described in this paper mimics a biological neural network using
pulse-stream signaling and analog summation and multiplication. Synaptic weights are multiplied by employing
current mirrors and choosing proper W/L ratios of output transistors of the pulse-coded neuron cell. The refractory
period of action potentials is also considered and demonstrated in this paper.

I. Introduction

Neuron cells that fire action potentials typically fire either continuously or in bursts of several action potentials
separated by quiescent periods. Because incoming pulses are summed with time, the neuron generates a pulse train
with a higher frequency for higher positive excitation. Each neuron is characterized by nonexcitability for a certain
time after the firing pulse, which is referred as the refractory period.

Tt was well into the 1930’s before significant measurements of pulse-coded electrical activity in the brain had
begun. The neuristor and its derivatives led to a large number of circuits being proposed for neural network
realizations in the mid 1960s through the mid 1970s. The main results to come out of this research activity in the
pulse-stream hardware area were the development of a bipolar circuit that acted as an action-potential-like-pulse
generator by Wilamowski, ez al. [1], its companion circuit by Newcomb, et al. {2}, and a similar MOS circuit [3].

Pulse-stream encoding technique [4]-[14] uses digital signals to carry information and control analog
circuitry, while storing further analog information on the time axis. Other advantages of using a pulse-stream
technique are that it is immune to noise and less susceptible to process variations between device; thus, it is robust
against the rigors of interchip communication. In a restricted sense, pulse-stream technique mimics the biological idea
of neuron action using both analog and digital structures.

Several pulse-stream techniques were proposed by Murray et al {4)-[6]. The pulse duty cycle technique [6]
uses weighting signals that are summed by means of switching CMOS transistors and a capacitor, and weighting on
the pulse duty cycle is performed by a voltage-controlled resistor. A frequency modulated pulse-firing circuit with a
programmable synapses using the threshold voltage of NMOS and floating-gate FETs is introduced [8). The circuit
uses the negative resistance characteristics of the MQW-IMD device was also introduced {9]. An adaptive neural
processing node with on chip learning using the unsupervised weight modification rule [12] demonstrates the
capability of producing linearly separable outputs that correspond to dominant features of the inputs. This study
presents a simple but powerful circuit for pulse-mode neural networks.

II. CMOS Circuit Structure and Operation

The concept of the neuron cell circuit is shown as a simplified circuit in Fig. 1. The circuit structure is based on the
current-driven simple neuron cell {10]. Transistors M1 and M3, which form a “thyristor” subcircuit, are normally cut
off. For positive input current excitation the input voltage on capacitor C1 increases. When VI reaches a level above
threshold voltage of transistor M1, the transistors M1, M2, and M3 become activated. Due to the positive closed-loop,
all currents will rapidly increase leading to discharge of capacitor C1 toward negative supply voltage. The charge
stored on C1 is the driving force in this pulse generation action. This state exists as long as Cl is not fully discharged.
At this moment resistor R2 drives gate of M1 toward positive voltages and M1, and consequently M2 and M3, are
turned off. After a pulse is generated, the voltage on capacitor C1 is low, and it is not possible to turn on transistor
M1 because source node has large negative voltage and gate has close to zero potential. Then V1 voitage gradually
approaches zero and reaches the steady-state condition. This recovery time is known as refractory period. If incoming
signals are strong, a neuron can fire before steady state condition reaches. This effect of the refractory period
dependence on input excitation is also observed in real neurons. The CMOS implementation of the neuron circuit is
shown in Fig. 1(b). Resistors Rl and R2 are substituted by transistors M4 and MS5. Transistor M2, M3 and multiple
transistors MN form multiple outputs negative current sources.
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Fig. 1. Circuit diagram of neural cell: (a) concept diagram; (b) CMOS implementation.
Using M6 and MP the set of positive current sources are created. By choosing proper W/L ratios in MN and MP any

positive or negative weighted current sources can be obtained. All transistors are off for most of the time, and they
conduct currents only during existence of pulse. This way the circuit is very energy efficient.
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Fig. 2. Neuron circuit response for various excitations: (a) ramp input current; (b) two input current pulses too close
to fire second pulse due to refractory period; (c) two input pulses well separated so the second pulse can fire
neuron; and (d) the same pulse separation as in case (b) but due to the large magnitude of the second input
pulse neuron is fired. Upper diagrams shows V1 and V2 voltages and lower diagrams shows input and output
currents. Note that currents are drawn not to scale.
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Fig. 2 shows the SPICE simulated characteristic of the neuron cell with a sinusoidal current input. As can be
seen from this figure, the firing rate increases as the current input level increases. The same effect can be also
observed in Fig. 3, where the neuron circuit.is excited with raising input current. Lower diagrams in Fig. 2 show
voltages on source and gate of M1. It can be clearly seen that neuron fires when input voltage reaches 0.75V
threshold. Fig. 3 also shows that the firing frequency is a function of the strength of input excitation.
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Fig. 3. Response of a neuron excited by the shifted sinusoidal current source.

III. Parity-3 Function as Network Example

This example illustrates the functionality of the proposed neuron circuit design with a parity-3 function which
demonstrates a nonlinear mapping of a set of variables. For a parity-3 function, if the number of logic “1” (pulse
firing action) inputs is odd, then the output is also assigned to a logic *“1”; otherwise, the output is assigned to a logic
“0” (no pulse firing action). The network structure with the synaptic weights is shown in Fig. 4. The neural network
architecture and the synaptic weights for this example are obtained using the trainable functional link neural network
(TFLNN) training technique [15]. TFLNN converges much quicker than some other existing network training
methods by introducing hidden neuron units in the network architecture. The circuit simulation result is illustrated in
Fig. 5. The circuit functions as expected and follows the nonlinear mapping patterns as required.

DC input biasing

oscillating
input neurons ~ +1

Fig. 4. Network structure for the parity-3 example.

IV. Conclusion

In this paper a CMOS hardware design to realize weighting and summing signals for pulse-stream neural networks is
developed. In particular, implementation of a pulse-stream neural cell with synaptic weighting and summing
capability is presented. The proposed neuron circuit has merit for hardware implementation due to its simple
structure, small size, and high speed of operation. It also has a refractory period characteristic which is analogous to a
natural biological neuron. Synaptic weight multiplication and summation are achieved by proper W/L ratios of MOS
transistors of the output current mirrors in the synapse cell. The neuron cell circuit which has been developed here
exhibits functional similarities to biological neurons through the demonstrated example. The circuit is very power
efficient and uses a stored energy in C1 with incoming excitations to generate a pulse.
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Fig. 5. Current waveforms on the outputs of neurons (1 through 5) obtain
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First three neurons are converting DC signal into current pulse trains.

operation of parity-3.
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ed with the SPICE in the circuit of Fig. 4.
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