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124.1 Neural Networks and Fuzzy Systems

New and better electronic devices have inspired researchers to build intelligent machines operating in a fash-
ion similar to the human nervous system. Fascination with this goal started when McCulloch and Pitts [1943]
developed their model of an elementary computing neuron and when Hebb (1949] introduced his learning
rules. A decade latter Rosenblatt [1958] introduced the perceptron concept. In the early 1960s Widrow and
Holf [1960, 1962] developed intelligent systems such as ADALINE and MADALINE. Nillson [1965] in his book
Learning Machines summarized many developments of that time. The publication of the Mynsky and Paper
[1969] book, with some discouraging resuits, stopped for sometime the fascination with artificial neural net-
works, and achievements in the mathematical foundation of the backpropagation algorithm by Werbos [1974]
went unnoticed. The current rapid growth in the area of neural networks started with the Hopfield [1982, 1984]
recurrent network, Kohonen [1982] unsupervised training algorithms, and a description of the backpropagation
algorithm by Rumelhart et al, [1986].

124.2 Neuron cell

A biological neuron is a complicated structure, which receives trains of pulses on hundreds of excitatory and
inhibitory inputs. Those incoming pulses are summed with different weights (averaged) during the time period
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FIGURE 124.1 OR, AND, NOT, and MEMORY operations using networks with McCulloch—Pitts neuron model.

of latent summation. If the summed value AN A H
is higher than a threshold, then the neu- gt T=15A8+BC+CA gt b AB+C
ron itself is generating a pulse, which is sent @ ¢~ ) ¢~

to neighboring neurons. Because incoming

pulses are summed with time, the neuron FIGURE 124.2 Other logic function realized with McCulloch-Pitts
generates a pulse train with a higher fre-  nheuron model.

quency for higher positive excitation. In other words, if the value of the summed weighted inputs is higher,
the neuron generates pulses more frequently. At the same time, each neuron is characterized by the nonexcitabil-

1 ifnee>T
T= [0 ifnet <T (124.1)

where T is the threshold and net value is the weighted sum of all incoming signals

n
net = Z w;iX; (124.2)
i=1

Examples of McCulloch—Pitts neurons realiz-

ing OR, AND, NOT, and MEMORY operations X
are shown in Fig. 124.1. Note that the structure *p
of OR and AND gates can be identical. With the X @
same structure, other logic functions can be real-
(b)

ized, as Fig. 124.2 shows.

The perceptron model has a similar structure.
Its input signals, the weights, and the thresholds FIGURE 1243 Threshold implementation with an additional
could have any positive or negative values. Usu- weight and constant input with +1 value: (a) Neuron with thresh-
a]_ly’ instead of usmg variable thteshold, one addi- old T, (b) modified neuron with threshold 7 = 0 and additional
tional constant input with a negative or positive =~ Weight equal to ~T.
weight can added to each neuron, as Fig. 124.3 shows. In this case, the threshold is always set to be zero and the
net value is calculated as

(a) *n

+1

net = Z WiXi + Wyy (124.3)

i=l

where wy ;| has the same value as the required threshold and the opposite sign. Single-layer perceptrons were
successfully used to solve many pattern classification problems. The hard threshold activation functions are given
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FIGURE 1244 Typical activation functions: (a) hard threshold unipolar, (b) hard threshold bipolar, (c) continuoﬁs
unipolar, (d) continuous bipolar.

by
_ __ sgn(net) + 1 _J1 if net>0
0= f(net) = = {0 if net <0 (124.4)
for unipolar neurons and
1 ifnet>0
0 = f(nef) = sgn(net) = {_1 ;f ::t '<‘ 0 .(124.5)

for bipolar neurons. For these types of neurons, most of the known training algorithms are able to adjust weights
only in single-layer networks.

Multilayer neural networks usually use continuous activation functions, either unipolar

1 ‘
0= f(net) = m (124.6)

or bipolar

2

= D=t 0.5\ = —_—
0 = f(net) = tanh( net) I+ exp(—ned 1

response can be controlled by the weight scaling only. Therefore, there is no real need to use neurons with variable
gains.

Note, that even neuron models with continuous activation functions are far from an actual biological neuron,
which operates with frequency modulated pulse trains.

124.3 Feedforward Neural N etworks

Feedforward neural networks allow only one directional signal flow. Furthermore, most feedforward neural
networks are organized in layers. An example of the three-layer feedforward neural network is shown in Fig. 124.5.
This network consists of input nodes, two hidden layers, and an output layer.

A single neuron is capable of separating input patterns into two categories, and this separation is linear. For
example, for the patterns shown in Fig. 124.6, the separation line is crossing x; and x, axes at points x,o and
x20. This separation can be achieved with a neuron having the following weights: w; = 1/x,,, w2 = 1/x4, and
W3 = —1. In general for n dimensions, the weights are

Wi = — for Wpyp = —1 (124.8)

One neuron can divide only linearly separated patterns. To select just one region in n-dimensional input space,
more than n + 1 neurons should be used, If more input clusters are to be selected, then the number of neurons
in the input (hidden) layer should be properly multiplied. If the number of neurons in the input (hidden) layer
is not limited, then all classification problems can be solved using the three-layer network. An example of such
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aneural network, classifying three clus-
ters in the two-dimensional space, is
shown in Fig. 124.7. Neuronsin the first
hidden layer create the separation lines
between input clusters. Neurons in the
second hidden layer perform the AND
operation, as shown in Fig. 124.1(b).
Output neurons perform the OR oper-
ation as shown in Fig, 124.1(a), for each
category. The linear separation prop-
erty of neurons makes some problems
specially difficult for neural networks,
such as exclusive OR, parity computa-
tion for several bits, or to separate pat-
ternslaying on two neighboring spirals.

The feedforward neural network is
also used for nonlinear transformation
(mapping) of a multidimensional in-
put variable into another multidimen-
sional variable in the output. In theory,
any input-output mapping should be
possible if the neural network has
enough neurons in hidden layers (size
of output layer is set by the number
of outputs required). In practice, this
is not an easy task. Presently, there is
no satisfactory method to define how
many neurons should be used in hid-
den layers. Usually, this is found by the
trial-and-error method. In general, it is
known that if more neurons are used,
more complicated shapes can be map-
ped. On the other hand, networks with
large numbers of neurons lose their
ability for generalization, and it is more
likely that such networks will also tryto
map noise supplied to the input,
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FIGURE 124.5 An example of the three layer feedforward neural network,
which is sometimes known also as the backpropagation network.
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FIGURE 124.6 [llustration of the property of linear separation of patterns
in the two-dimensional space by a single neuron.
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FIGURE 124.7 An example of the three layer neural network with two inputs for classification of three
different clusters into one category. This network can be generalized and can be used for solution of all

classification problems.
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124.4 Learning Algorithms for Neural Networks

Similarly to the biological neurons, the weights in artificial neurons are adjusted during a training procedure.
Various learning algorithms were developed, and only a few are suitable for multilayer neuron networks, Some use
only local signals in the neurons, others require information from outputs; some require a supervisor who knows
what outputs should be for the given patterns, and other unsupervised algorithms need no such information.
Common learning rules are described in the following sections.

Hebbian Learning Rule

The Hebb [1949] learning rule is based on the assumption that if two neighbor neurons must be activated and
deactivated at the same time, then the weight connecting these neurons should increase. For neurons operating
in the opposite phase, the weight between them should decrease. If there is no signal correlation, the weight
should remain unchanged. This assumption can be described by the formula

Aw;,» = cx,-oj (124.9)

wij = weight from ith to jth neuron
¢ = learning constant

X; = signal on the /th input

0; = output signal

soft and hard threshold neurons. Since desired responses of neurons is not used in the learning procedure, this
is the unsupervised learning rule. The absolute values of the weights are usually proportional to the learning
time, which is undesired.

Correlation Learning Rule

The correlation learning rule is based on a similar principle as the Hebbian learning rule. It assumes that
weights between simultaneously responding neurons should be largely positive, and weights between neurons
with opposite reaction should be largely negative. Contrary to the Hebbian rule, the correlation rule is the
supervised learning. Instead of actual response, o; the desired response d; is used for the weight change
calculation

Aw,-j = cx,-d,- (124.10)

This training algorithm usually starts with initialization of weights to zero values.

Instar Learning Rule

If input vectors and weights are normalized, or they have only binary bipolar values (—1 or +1), then the net
value will have the largest positive value when the weights and the input signals are the same. Therefore, weights
should be changed only if they are different from the signals

Aw,' = c(x,' - w,-) (124.11)

Note, that the information required for the weight is taken only from the input signals. This is a very local and
unsupervised learning algorithm. :
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Winner Takes All (WTA)

The WTA is a modification of the instar algorithm where weights are modified only for the neuron with the
highest net value. Weights of remaining neurons are left unchanged. Sometimes this algorithm is modified
in such a way that a few neurons with the highest net values are modified at the same time. Although this is
an unsupervised algorithm because we do not know what are desired outputs, there is a need for “judge” or
“supervisor” to find a winner with a largest net value. The WTA algorithm, developed by Kohonen [1982], is
often used for automatic clustering and for extracting statistical properties of input data.

Outstar Learning Rule

In the outstar learning rule, it is required that weights connected to a certain node should be equal to the desired
outputs for the neurons connected through those weights

Aw;j = C(dj - w,-j) (124.12)

where d; is the desired neuron output and c is small learning constant, which further decreases during the
learning procedure. This is the supervised training procedure because desired outputs must be known. Both
instar and outstar learning rules were developed by Grossberg [1969].

Widrow-Hoff LMS Learning Rule

Widrow and Hoff [1960, 1962] developed a supervised training algorithm which allows training a neuron for
the desired response. This rule was derived so the square of the difference between the net and output value is
minimized.

P
Error; = Z(netj,, ~-d;p)? (124.13)
p=1

where:

Error; = error for jth neuron
P = number of applied patterns

= desired output for jth neuron when pth pattern is applied
net = given by Eq. (124.2).

djp

This rule is also known as the least mean square (LMS) rule. By calculating a derivative of Eq. (124.13) with
respect to w;;, a formula for the weight change can be found,

P
Awi; =cx; Y _(djp — net;p) (124.14)
p=l1

Note that weight change Awj; is a sum of the changes from each of the individual applied patterns. Therefore, it
is possible to correct the weight after each individual pattern was applied. This process is known as incremental
updating, cumulative updating is when weights are changed after all patterns have been applied. Incremental
updating usually leads to a solution faster, but it is sensitive to the order in which patterns are applied. If the
learning constant c is chosen to be small, then both methods give the same result. The LMS rule works well for
all types of activation functions. This rule tries to enforce the net value to be equal to desired value. Sometimes
this is not what the oberver is looking for. It is usually not important what the net value is, but it is important if
the net value is positive or negative. For example, a very large net value with a proper sign will result in correct
output and in large error as defined by Eq. (124.13) and this may be the preferred solution.
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Linear Regression

The LMS learning rule requires hundreds or thousands of iterations, using formula (124.14), before it converges
to the proper solution. Using the linear regression rule, the same result can be obtained in only one step. V

Considering one neuron and using vector notation for a set of the input patterns X applied through weight
vector w, the vector of net values net is calculated using

Xw = net (124.15)

where:

X = rectangular array (n + Dxp
n = number of inputs
P = number of patterns

Note that the size of the input patterns is always augmented by one, and this additional weight is responsible for
the threshold [see Fig. 124.3(b)]. This method, similar to the LMS rule, assumes a linear activation function, and
so the net values net should be equal to desired output values d

Xw=d (124.16)

Usually p > n + 1, and the preceding equation can be solved only in the least mean square error sense. Using
the vector arithmetic, the solution is given by:

w=(XTx)"'xT4 (124.17)

When traditional method is used the set of p equations with + 1 unknowns Eq. ( 124.16) has to be converted
to the set of # + 1 equations with n + 1 unknowns

Yw=2 (124.18)

where elements of the Y matrix and the z vector are given by

P P
Y=Y XXy u= xyd, (124.19)
p=l p=1
Weights are given by Eq. ( 124.17) or they can be obtained by a solution of Eq. ( 124.18).

Delta Learning Rule

The LMS method assumes linear activation function net = o, and the obtained solution is sometimes far from
optimum, as is shown in Fig. 124.8 for a simple two-dimensional case, with four patterns belonging to two
categories. In the solution obtained using the LMS algorithm, one pattern is misclassified. If error is defined as

P
Error; = 3 "(0;, — d;,)2 (124.20)
p=1

Then the derivative of the error with respect to the weight w; is

d Error; F df (net;,)
=2 ip —d; i 21
dw;; p;l ©ip = djp) d net; H (124.21)

P

since 0 = f(net) and the netis given by Eq. (124.2). Note that this derivative is proportional to the derivative of
the activation function f'(nep). Thus, this type of approach is possible only for continuous activation functions
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and this method cannot be used with hard activation functions (124.4) and (124.5). In this respect the LMS
method is more general. The derivatives most common continuous activation functions are

for the unipolar [Eq. (124.6)] and

for the bipolar [Eq. (124.7)].

f =o0(1-0) (124.22)

f =051 -0?% (124.23)

Using the cumulative approach, the neuron weight w;; should be changed with a direction of gradient

P
Aw,-,- =CX; Z(djp e ij)f;p

(124.24)
p=l1

in case of the incremental training for each applied pattern

Aw,-j = C.x,'f}’(dj - Oj)

(-]
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FIGURE 124.8 An example with a comparison
of results obtained using LMS and delta training
algorithms. Note that LMS is not able to find the
proper solution.

where:

¢ = learning constant
*; = signal on the ith neuron input

fJf = derivative of activation function

(124.25)

the weight change should be proportional to input signal x;, to
the difference between desired and actual outputs dj, — 0/,
and to the derivative of the activation function f;p- Similar to
the LMS rule, weights can be updated in both the incremental
and the cumulative methods. In comparison to the LMS rule,
the delta rule always leads to a solution close to the optimum.
As it is illustrated in Fig. 124.8, when the delta rule is used, all
four patterns are classified correctly.

Error Backpropagation Learning

The delta learning rule can be generalized for multilayer net-
works. Using an approach similiar to the delta rule, the gradient
of the global error can be computed with respect to each weight
in the network. Interestingly,

The cumulative error E j on neuron output is given by

Aw,-j = Cx,'f}’Ej (124.26)
1 K
Ej=—Y (o~ d)Ap (124.27)

J k=1

where K is the number of network outputs A j is the small signal gain from the input of jth neuron to the kth
network output, as Fig. 124.9 shows. The calculation of the backpropagating error starts at the output layer and
cumulative errors are calculated layer by layer to the input layer. This approach is not practical from the point of
view of hardware realization. Instead, it is simpler to find signal gains from the input of the jth neuron to each
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FIGURE 1249 Illustration of the concept of gain computation in neural networks.
of the network outputs (Fig. 124.9). In this case, weights are corrected using
K
Aw;j =cx; Y (or — di)Aje (124.28)

k=1

Note that this formula is general, regardless of if neurons are arranged in layers or not. One way to find gains Aj;
is to introduce an incremental change on the input of the jth neuron and observe the change in the kth network
output. This procedure requires only forward signal propagation, and it is easy to implement in a hardware
realization. Another possible way is to calculate gains through each layer and then find the total gains as products
of layer gains. This procedure is equally or less computationally intensive than a calculation of cumulative errors
in the error backpropagation algorithm.

The backpropagation algorithm has a tendency for oscillation. To smooth the process, the weights increment
Auw;; can be modified according to Rumelhart, Hinton, and Wiliams {1986]

w,—,-(n +1)= w;,-(n) + Awij(n) +aAw,-,-(n -1 (12429)
or according to Sejnowski and Rosenberg [1987]
wij(n + 1) = w;j(n) + (1 — a)Aw;;(n) +aAw;i(n—1) (124.30)

where « is the momentum term.
The backpropagation algorithm can be sig- ' | f(net)

nificantly sped up, when, after finding com- ACTUAL DERIVATIVE +14 ouTPuT
ponents of the gradient, weights are modified
along the gradient direction until a minimum
isreached. This process can be carried on with-
out the necessity of a computationally intensive A net
gradient calculation at each step. The new gra- 75‘*?'
dient components are calculated once a mini- @
mum is obtained in the direction of the previ- ¥
ous gradient. This process is only possible for
cumulative weight adjustment. One method of gﬁﬁgﬁ? 1-1
finding a minimum along the gradient direc-

tion is the tree step process of finding error for  FIGURE 124.10 Illustration of the modified derivative calculation
three points along gradient direction and then, for faster convergency of the error backpropagation algorithm.
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using a parabola approximation, jump directly to the minimum. The fast learning algorithm using the described
approach was proposed by Fahlman [1988] and is known as the quickprop.

The backpropagation algorithm has many disadvantages, which lead to very slow convergency. One of the most
painful is that in the backpropagation algorithm, the learning process almost perishes for neurons responding
with the maximally wrong answer. For example, if the value on the neuron output is close to +1 and desired
output should be close to —1, then the neuron gain f'(net) ~ 0 and the error signal cannot backpropagate,
and so the learning procedure is not effective. To overcome this difficulty, a modified method for derivative
calculation was introduced by Wilamowski and Torvik [1993]. The derivative is calculated as the slope of a line
connecting the point of the output value with the point of the desired value, as shown in Fig. 124.10

Odesi - 0,
Frnodif = ——eized 7 Zactual (124.31)
netdesired - netactual

Note that for small errors, Eq. (124.31) converges to the derivative of activation function at the point of the
output value. With an increase of system dimensionality, the chances for local minima decrease. It is believed
that the described phenomenon, rather than a trapping in local minima, is responsible for convergency problems
in the error backpropagation algorithm.

124.5 Special Feedforward Networks

The multilayer backpropagation network, as shown in Fig. 124.5, is a commonly used feedforward network. This
network consists of neurons with the sigmoid type continuous activation function presented in Figs. 124.4(c)
and 124.4(d). In most cases, only the one hidden layer is required, and the number of neurons in the hidden layer
are chosen to be proportional to the problem complexity. The number of neurons in the hidden layer is usually
found by a trial-and-error process. The training process starts with all weights randomized to small values, and
the error backpropagation algorithm is used to find a solution. When the learning process does not converge,
the training is repeated with a new set of randomly chosen weights. Nguyen and Widrow [1990] proposed an
experimental approach for the two-layer network weight initialization. In the second layer, weights are randomly
chosen in the range from —0.5 to +0.5. In the first layer, initial weights are calculated from

_ Bzij .
lz;lt’

where z;; is the random number from —0.5 to +0.5 and the scaling factor 8 is given by

Wi Wn+1)j = random(—-ﬁ, +ﬂ) (124.32)

B =0.7P% (124.33)

where n is the number of inputs and N is the number of hidden neurons in the first layer. This type of weight
initialization usually leads to faster solutions.

For adequate solutions with backpropagation networks, typically many tries are required with different network
structures and different initial random weights. It is important that the trained network gains a generalization
property. This means that the trained network also should be able to handle correctly patterns that were not
used for training. Therefore, in the training procedure, often some data are removed from the training patterns
and then these patterns are used for verification. The results with backpropagation networks often depend on
luck. This encouraged researchers to develop feedforward networks, which can be more reliable. Some of those
networks are described in the following sections.

Functional Lihk Network

One-layer neural networks are relatively easy to train, but these networks can solve only linearly separated
problems. One possible solution for nonlinear problems presented by Nilsson [1965] and then was elaborated
by Pao [1989] using the functional link network shown in Fig. 124.11. Using nonlinear terms with initially
determined functions, the actual number of inputs supplied to the one-layer neural network is increased. In the
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simplest case, nonlinear elements are higher order terms of input
patterns. Note that the functional link network can be treated
as a one-layer network, where additional input data are gen-
erated off line using nonlinear transformations. The learning
procedure for one-layer is easy and fast. Figure 124.12 shows an
X OR problem solved using functional link networks. Note that
when the functional link approach is used, this difficult prob-
lem becomes a trivial one. The problem with the functional link
network is that proper selection of nonlinear elements is not an
easy task. In many practical cases, however, it is not difficult to
predict what kind of transformation of input data may linearize
the problem, and so the functional link approach can be used.

Feedforward Version of the Counterpropagation FIGURE 124.11 The functional link network.
Network

The counterpropagation network was originally proposed by Hecht-Nilsen {1987]. In this section a modified
feedforward version as described by Zurada [1992] is discussed. This network, which is shown in Fig. 124.13,
requires numbers of hidden neurons equal to the number of input patterns, or more exactly, to the number of
input clusters. The first layer is known as the Kohonen layer with unipolar neurons. In this layer only one neuron,
the winner, can be active. The second is the Grossberg outstar layer. The Kohonen layer can be trained in the
unsupervised mode, but that need not be the case. When binary input patterns are considered, then the input
weights must be exactly equal to the input patterns. In this case, '

net = x'w = [n — 2HD(x, w)] (124.34)
where:
n = number of inputs
w = weights
x = input vector

HD(w, x) = Hamming distance between input pattern and weights

For a neuron in the input layer to be reacting just for the stored pattern, the threshold value for this neuron
should be

Win+t) = —(n - 1) (124.35)

If it is required that the neuron must also react for similar patterns, then the threshold should be set to w41 =
—[n — (1 + HD)], where HD is the Hamming distance defining the range of similarity. Since for a given input
pattern only one neuron in the first layer may have the value of 1 and remaining neurons have 0 values, the
weights in the output layer are equal to the required output pattern.

UNIPOLAR NEURON BIPOLAR NEURON

+te 05 +

X4
-05 > ouTRUT
Xp XOR
+1

FIGURE 124.12 Functional link networks for solution of the XOR problem: (a) using unipolar
signals, (b) using bipolar signals.

(a)
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FIGURE 124.13 The counterpropagation network.

The network, with unipolar activation functions in the first layer, works as a lookup table. When the linear
activation function (or no activation function at all) is used in the second layer, then the network also can be
considered as an analog memory. For the address applied to the input as a binary vector, the stored set of analog
values, as weights in the second layer, can be accurately recovered. The feedforward counterpropagation network
may also use analog inputs, but in this case all input data should be normalized,

W= = (124.36)
llxil

The counterpropagation network is very easy to design. The number of neurons in the hidden layer is equal to
the number of patterns (clusters). The weights in the input layer are equal to the input patterns, and the weights
in the output layer are equal to the output patterns. This simple network can be used for rapid prototyping.
The counterpropagation network usually has more hidden neurons than required. However, such an excessive
number of hidden neurons are also used in more sophisticated feedforward networks such as the probabilistic

neural network (PNN) Specht [1990] or the general regression neural networks (GRNN) Specht {1992].

WTA Architecture

The winner take all network was proposed by Kohonen [1988]. This is basically a one-layer network used in the
unsupervised training algorithm to extract a statistical property of the input data {Fig. 124.14(a)]. At the first
step, all input data are normalized so that the length of each input vector is the same and, usually, equal to unity
[Eq. (124.36)]. The activation functions of neurons are unipolar and continuous. The learning process starts
with a weight initialization to small random values. During the learning process the weights are changed only
for the neuron with the highest value on the output—the winner

Aw, = c(x — wy) (124.37)
wy = weights of the winning neuron

input vector
learning constant
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Usually, this single-layer network is arranged into a two-
dimensional layer shape, as shown in Fig. 124.14(b). The hexag-
onal shape is usually chosen to secure strong interaction between
neurons. Also, the algorithm is modified in such a way that not
only the winning neuron but also neighboring neurons are al-
lowed for the weight change. At the same time, the learning con-
stant ¢ in Eq. (124.37) decreases with the distance from the win-
ning neuron. After such a unsupervised training procedure, the
Kohonen layer is able to organize data into clusters. Output of
the Kohonen layer is then connected to the one- or two-layer
feedforward network with the error backpropagation algorithm. ()
This initial data organization in the WTA layer usually leads to
rapid training of the following layer or layers.

0
[
=
2
a
w
N

Cascade Correlation Architecture

The cascade correlation architecture was proposed by Fahlman

and Lebiere [1990]. The process of network building starts with

a one-layer neural network and hidden neurons are added as (b)
needed. The network architecture is shown in Fig. 124.15. In each
training step, a new hidden neuron is added and its weights are
adjusted to maximize the magnitude of the correlation between
the new hidden neuron output and the residual error signal on
the network output to be eliminated. The correlation parameter
S must be maximized

FIGURE 124.14 A winner take all architecture
for cluster extracting in the unsupervised train-
ing mode: (a) Network connections, (b) single-
layer network arranged into a hexagonal shape.

o | P
S=Y 12 (Vo= V)(Ep — Eo) (124.38)
o=1 | p=1
where:
O = number of network outputs
P = number of training patterns
V, = output on the new hidden neuron

Ep, = error on the network output

V and E, are average values of V, and E p, respectively. By finding the gradient, 85 /3w, the weight adjustment
for the new neuron can be found as ’

0O P
Aw; =) > " 00(Epo = Eo) fyoip (124.39)

o=l p=1
where: _
o, = sign of the correlation between the new neuron output value and network output

f 1’7 = derivative of activation function for pattern p
Xip = input signal

The output neurons are trained using the delta or quickprop algorithms. Each hidden neuron is trained just
once and then its weights are frozen. The network learning and building process is completed when satisfactory
results are obtained.

Radial Basis Function Networks

The structure of the radial basis network is shown in Fig. 124.16. This type of network usually has only one
hidden layer with special neurons. Each of these neurons responds only to the inputs signals close to the stored
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pattern. The output signal k; of the i-th hidden neuron is computed using formula

where:

x = input vector

llx — s}l
hi =exp\ == 7

s; = stored pattern representing the center of the i cluster

o; = radius of the cluster

Note that the behavior of this “neu-
ron” significantly differs form the bi-
ological neuron. In this “neuron,” exci-
tation is not a function of the weighted
sum of the input signals. Instead, the
distance between the input and stored
pattern is computed. If this distance
is zero then the neuron responds with
a maximum output magnitude equal
to one. This neuron is capable of rec-
ognizing certain patterns and generat-
ing output signals that are functions
of a similarity. Features of this neuron
are much more powerful than a neuron
used in the backpropagation networks.

LUHIPRLCL Jyotlillo

(124.40)

QUTPUT

—— WEIGHTS ADJUSTED EVERY STEP +1

-------- ONCE ADJUSTED WEIGHTS AND THEN FROZEN

FIGURE 124.15 The cascade correlation architecture.

As a consequence, a network made of such neurons is also more powerful.

If the input signal is the same as a pattern stored in a neuron, then this neuron responds with 1 and remaining
neurons have 0 on the output, as is illustrated in Fig. 124.16. Thus, output signals are exactly equal to the weights
coming out from the active neuron. This way, if the number of neurons in the hidden layer is large, then any in-
put/output mapping can be obtained. Unfortunately, it may also happen that for some patterns several neuronsin
the firstlayer will respond with a nonzero signal. For a proper approximation, the sum of all signals from the hidden
layer should be equal to one. To meet this requirement, output signals are often normalized as shown in Fig. 124.16.

HIDDEN "NEURONS"

INPUTS
xISCLOSETO s,

FIGURE 124.16

OUTPUTS

SUMMING
CIRCUIT

A typical structure of the radial basis function network.

OUTPUT
NORMALIZATION

NEURONS



The radial-based networks can be designed or trained. Training is usually carried out in two steps. In the
first step, the hidden layer is usually trained in the unsupervised mode by choosing the best patterns for cluster
representation. An approach, similar to that used in the WTA architecture can be used. Also in this step, radii o;
must be found for a proper overlapping of clusters. ' :

The second step of training is the error backpropagation algorithm carried on only for the output layer. Since
this is a supervised algorithm for one layer only, the training is very rapid, 100-1000 times faster than in the
backpropagation multilayer network. This makes the radial basis-function network very attractive. Also, this
network can be easily modeled using computers; however, its hardware implementation would be difficuit.

124.6 Recurrent Neural Networks

In contrast to feedforward neural networks, with recur-
rent networks neuron outputs can be connected with
their inputs. Thus, signals in the network can continu-
ously circulate. Until recently, only a limited number of
recurrent neural networks were described.

Hopfield Network

The single-layer recurrent network was analyzed by Hop-

field [1982]. This network, shown in Fig. 124.17, has
unipolar hard threshold neurons with outputs equal to 0
or 1. Weights are given by a symmetrical square matrix
W with zero elements (w;; = 0 fori = j) on the main
diagonal. The stability of the system is usually analyzed
by means of the energy function

FIGURE 124.17 A Hopfield network or autoassocia-
tive memory. 1 & &

E==23"3 Wyuw, (12441)

i=1 j=I

It has been proved that during signal circulation the energy E of the network decreases and the system converges
to the stable points. This is especially true when the values of system outputs are updated in the asynchronous
mode. This means that at a given cycle, only one random output can be changed to the required values. Hopfield
also proved that those stable points which the system converges can be programmed by adjusting the weights
using a modified Hebbian rule,

Aw;j = Awj; = Qu; — DQv; — 1)c (124.42)

Such memory has limited storage capacity. Based on experiments, Hopfield estimated that the maximum number
of stored patterns is 0.15N, where N is the number of neurons.

Later the concept of energy function was extended by Hopfield [1984] to one-layer recurrent networks having
neurons with continuous activation functions. These types of networks were used to solve many optimization
and linear programming problems.

Autoassociative Memory

Hopfield [1984] extended the concept of his network to autoassociative memories. In the same network structure
as shown in Fig, 124.17, the bipolar hard-threshold neurons were used with outputs equal to —1 or +1. In this
network, pattern s, are stored into the weight matrix W using the autocorrelation algorithm

M
W= snsp, — MI (124.43)
m=1



1908 . Computer Systems

(a) b)

FIGURE 124.18 Anexample of the bi-directional autoassociative memory: (a) drawn as a two-layer network with circulating
signals, (b) drawn as two-layer network with bi-directional signal flow.

4
where M is the number of stored pattern and Iis the unity matrix. Note that Wis the square symmetrical matrix
with elements on the main diagonal equal to zero (wj; fori = j). Using a modified formula (124.42), new
patterns can be added or subtracted from memory. When such memory is exposed to a binary bipolar pattern
by enforcing the initial network states, after signal circulation the network will converge to the closest (most
similar) stored pattern or to its complement. This stable point will be at the closest minimum of the energy

1
E(v) = —EVTWV (124.44)

Like the Hopfield network, the autoassociative memory has limited storage capacity, which is estimated to be
about Mia, = 0.15N. When the number of stored patterns is large and close to the memory capacity, the network
has a tendency to converge to spurious states, which were not stored. These spurious states are additional minima
of the energy function.

Bidirectional Associative Memories (BAM)

The concept of the autoassociative memory was extended to bidirectional associative memories (BAM) by Kosko
[1987, 1988]. This memory, shown in Fig. 124.18, is able to associate pairs of the patterns @ and b. This is the
two-layer network with the output of the second layer connected directly to the input of the first layer. The weight
matrix of the second layer is WT and W for the first layer. The rectangular weight matrix Wis obtained as a sum
of the cross-correlation matrixes

W= anbn (124.45)

where M is the number of stored pairs, and a, and by, are the stored vector pairs. If the nodes a or b are
initialized with a vector similar to the stored one, then after signal circulations, both stored patterns a,, and b,
should be recovered. The BAM has limited memory capacity and memory corruption problems similar to the
autoassociative memory. The BAM concept can be extended for association of three or more vectors.

124.7 Fuzzy Systems

The main applications of neural networks are related to the nonlinear mapping of n-dimensional input variables
into m-dimensional output variables. Such a function is often required in control systems, where for specific
measured variables certain control variables must be generated. Another approach for nonlinear mapping of one
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set of variables into another set of variables is the fuzzy controller. The principle ANALOG INPUTS

of operation of the fuzzy controller significantly differs from neural networks. The

block diagram of a fuzzy controller is shown in Fig. 124.19. In the first step, analog FUZZIFICATION
inputs are converted into a set of fuzzy variables. In this step, for each analog input, ' INPUT FUZZY
3-9 fuzzy variables typically are generated. Each fuzzy variable has an analog value YARIABLES
between zero and one. In the next step, a fuzzy logic is applied to the input fuzzy ULE EVALUATION

variables and a resulting set of output variables is generated. In the last step, known JF T Y
as defuzzification, from a set of output fuzzy variables, one or more output analog DEFUZIFICATION
variables are generated, which are used as control variables. :

ANALOG OUTPUTS
Fuzzification ‘

FIGURE 124.19 The
The purpose of fuzzification is to convert an analog variable input into a set of fuzzy  block diagram of the fuz-

variables. For higher accuracy, more fuzzy variables will be chosen. To illustrate the zy controller.
fuzzification process, consider that the input variable is the temperature and is coded
into five fuzzy variables: cold, cool, normal, warm, and hot. Each fuzzy variable should obtain a value between
zero and one, which describes a degree of association of the analog input (temperature) within the given fuzzy
variable. Sometimes, instead of the term degree of association, the term degree of membership is used. The process
of fuzzification is illustrated in Fig. 124.20. Using Fig. 124.20 we can find the degree of association of each fuzzy
variable with the given temperature. For example, for a temperature of 57°F, the following set of fuzzy variables
is obtained: {0, 0.5, 0.2, 0, 0], and for T = 80°F it is [0, 0,0.25, 0.7, 0]. Usually only one or two fuzzy variables
have a value other than zero. In the example, trapezoidal functions are used for calculation of the degree of
association. Various different functions such as triangular or Gaussian, can also be used, as long as the computed
value is in the range from zero to one. Each membership function is described by only three or four parameters,
which have to be stored in memory.

For proper design of the fuzzification stage, certain practical rules should be used:

* Each point of the input analog variable should belong to at least one and no more than two membership
functions.

* For overlapping functions, the sum of two membership functions must not be larger than one. This also
means that overlaps must not cross the points of maximum values (ones).

* For higher accuracy, more membership functions should be used. However, very dense functions lead to
frequent system reaction and sometimes to system instability.

Rule Evaluation

In contrary to boolean logic where variables can have only binary states, in fuzzy logic all variables may have any
values between zero and one. The fuzzy logic consists of the same basic A - AND, v-OR, and NOT operators:

AABAC = min{A, B, C}—smallest value of A or B or C
AVBVC = max{A,B, C}—largest value of A or B or C
A =>1]1-4 —one minus value of A

For example 0.1 A 0.7 A 0.3 = 0.1,0.1v0.7v 0.3 =0.7,and 0.3 = 0.7. These rules are also known as Zadeh
AND, OR, and NOT operators [Zadeh 1965]. Note that these rules are true also for classical binary logic.

57°F 80°F .

CoLD cooL : NORMAL . WARM  HOT 2 :(:;M o z HOT .

x » [ x §7°F | g E—.M& ° - P

j o 03 80°F * g MQ.Q

: : U g LCOL_, 55 § [ QoL o

@ 20 3 40 s0 6 70 80 9 100 110 °F @ oo . Z |cow 0

FIGURE 124.20 Fuzzification process: (a) typical membership functions for the fuzzification and the defuzzification pro-
cesses, {b) example of converting a temperature into fuzzy variables.
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Fuzzy rules are specified in the fuzzy table as it is shown for nlrln nlrln
a given system. Consider a simple system with two analog in- o1z lz |2 x Pt | 2] e
put variables x and y, and one output variable z. The goal is to %15 % | % % || 2| &
design a fuzzy system generating z as f(x, y)- After fuzzifica- =% %% = o | % |
tion, the analog variable x is represented by five fuzzy variables: MR D S
X1, X2, X3, X4, X5 and an analog variable y is represented by three T 1= 1= o P 7 T
fuzzy variables: y;, y2, y3. Assume that an analog output variable ™) ®

is represented by four fuzzy variables: z1, 22, 23, 24. The key issue
of the design process is to set proper output fuzzy variables z; for
all combinations of input fuzzy variables, as is shown in the table
in Fig. 124.21. The designer has to specify many rules such as if
inputs are represented by fuzzy variables x; and y, then theoutput
should be represented by fuzzy variable z;. Once the fuzzy table
is specified, the fuzzy logic computation proceeds in two steps.
First each field of the fuzzy table is filled with intermediate fuzzy
variables 1;;, obtained from AND operator #; = min{x;, y i)s as
shown in Fig. 124.21(b). This step is independent of the required 0
rules for a given system. In the second step, the OR (max) op-
erator is used to compute each output fuzzy variable z. In the
given example in Fig. 124.21,2) = max{t1y, h12, 121, ta1, 51}, 22 =
max{ti3, 131, ta2, Is2}, 23 = max{ty, f3, ta3}, 24 = max{tsy, t34, ts3). Note that the formulas depend on the
specifications given in the fuzzy table shown in Fig. 124.21(a).

FIGURE 124.21 Fuzzy tables: (a) table with
fuzzy rules, (b) table with the intermediate vari-
ables ;.

FIGURE 124.22 [llustration of the defuzzifi-
cation process.

Defuzzification

As a result of fuzzy rule evaluation, each analog output variable is represented by several fuzzy variables. The
purpose of defuzzification is to obtain analog outputs. This can be done by using a membership function similar

to that shown in Fig. 124.20. In the first step, fuzzy variables obtained from rule evaluations are used to modify
the membership function employing the formula

sy (2) = min{ux(2), z&} (124.46)

For example, if the output fuzzy variables are: 0, 0.2, 0.7, 0.0, then the modified membership functions have
shapes shown by the thick line in Fig. 124.22. The analog value of the z variable is found as a center of gravity of

modified membership functions u}(z),
n +00
> f i (2)2dz
k=1 Y —%0

Zanalog = n o0 (124.47)
(Z f m'(z)dz)

k=] ¥~

In the case where shapes of the output membership functions ¢ (z) are the same, the equation can be simplified

to
(Z Zkzck)
Zamalog = ~ (124.48)
(£

k=1
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FIGURE 124.23 Membership functions for the presented example: (a) and (b) are membership functions for input variables,
(c) and (d) are two possible membership functions for the output variable.

where: DRY | NORMAL| WeT
n = number of membership function of Zanalog Output variable cop | m s s
zx = fuzzy output variables obtained from rule evaluation cooL | ™ M s
zcx = analog values corresponding to the center of kth member- warm 1 L " s
ship function. o M - - "

Equation (124.47) is usually too complicated to be used in a sim-

ple microcontroller based system; therefore, in practical cases, Eq. DRY | NORMAL | WET
(124.48) is used more frequently. 0 0.4 0.6
COLD 0 0 0 0
Design Example cooL oz | o | o2 02
Consider the design of a simple fuzzy controller for a sprinkler system. WARM 05 | © 04 05
The sprinkling time is a function of humidity and temperature. Four ® HoT_ 0O 0 0 0

membership functions are used for the temperature, three for hu-
midity, and three for the sprinkle time, as shown in Fig. 124.23. Using ~ FIGURE 124.24 Fuzzy tables: (a) fuzzy
intuition, the fuzzy table can be developed, as shown in Fig. 124.24(a). rulesfor the design example, (b) fuzzy tem-
Assume a temperature of 60°F and 70% humidity. Using the mem- porary variables for the design example.

bership functions for temperature and humidity the following fuzzy

variables can be obtained for the temperature: {0, 0.2, 0.5, 0], and for the humidity: [0, 0.4, 0.6]. Using the min
operator, the fuzzy table can be now filled with temporary fuzzy variables, as shown in Fig. 124.24(b). Note that
only four fields have nonzero values. Using fuzzy rules, as shown in Fig. 124.24(a), the max operator can be
applied in order to obtain fuzzy output variables: short - 0, = max{0, 0, 0.2, 0.5, 0} = 0.5, medium — 0; =
max{0, 0, 0.2, 0.4, 0} =0.4,long - 03 = max{0, 0} = 0. Using Eq. (124.47) and Fig. 124.23(c) a sprinkle time of
28 min is determined. When the simplified approach is used with Eq. (124.46) and Fig. 124.23(d), then sprinkle
time is 27 min.

124.8 Genetic Algorithms

The success of the artificial neural networks encouraged researchers to search for other patterns in nature to follow.
The power of genetics through evolution was able to create such sophisticated machines as the human being,.
Genetic algorithms follow the evolution process in nature to find better solutions to some complicated problems.
The foundations of genetic algorithms are given by Holland [1975] and Goldberg [1989]. After initialization, the
steps selection, reproduction with a crossover, and mutationare repeated for each generation. During this procedure,
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certain strings of symbols, known as chromo- ~ TABLE124.1 Initial Population
somes, evaluate toward a better solution. The ge-

. . . . . String Decimal Variable Function Fraction
netic algorithm method begins with coding and Number String  Value Value Value of Total
an initialization. All significant steps of the ge-

netic algorithm will be explained using a simple ! 101101 45 L125 00633 02465
. o ofthe function 101000 40 1000 00433  0.1686

example of finding a maximum o 3 010100 20 0500 00004  0.0016
(sin?(x) — 0.5 * x)? with the range of x from 0 4 100101 37 0925 00307  0.1197
to 1.6. Note that in this range, the functionhasa 5 001010 10 0.250 0.0041 0.0158
global maximum at x = 1.309, and alocal max- 6 110001 49 1225 00743 02895
imum at x = 0.262. 7 100111 39 0975 00390  0.1521
8 000100 4 0.100 00016  0.0062

Total 02568  1.0000

Coding and Initialization
At first, the variable x has to be represented as a string of symbols. With longer strings, the process usually
converges faster, so the fewer symbols for one string field that are used, the better. Although this string may be
the sequence of any symbols, the binary symbols 0 and 1 are usually used. In our example, six bit binary numbers

are used for coding, having a decimal value of 40x. The process starts with a random generation of the initial
population given in Table 124.1.

Selection and Reproduction

Selection of the best members of the population is an important step in the genetic algorithm. Many different
approaches can be used to rank individuals. In this example the ranking function is given. Highest rank has
member number 6, and lowest rank has member number 3. Members with higher rank should have higher
chances to reproduce. The probability of reproduction for each member can be obtained as a fraction of the
sum of all objective function values. This fraction is shown in the last column of Table 124.1. Note that to use

this approach, our objective function should always be positive. If it is not, the proper normalization should be
introduced at first. :

Reproduction

The numbers in the last column of Table 124.1 show the probabilities of reproduction. Therefore, most likely
members number 3 and 8 will not be reproduced, and members 1 and 6 may have two or more copies. Using a
random reproduction process, the following population, arranged in pairs, could be generated:

101101 — 45 110001 = 49 100101 — 37 110001 — 49
100111— 39 101101 — 45 110001 — 49 101000 — 40

Ifthe size of the population from one generation to another is the same, two parents should generate two children.
By combining two strings, two other strings should be generated. The simplest way to do this is to split in half
each of the parent strings and exchange substrings between parents. For example, from parent strings 010100 and
100111, the following child strings will be generated 010111 and 100100. This process is known as the crossover.
The resultant children are

101111 — 47 110101 —53 100001 —> 33 110000 — 48

100101 — 37 101001 —41 110101 »53 101001 — 41

In general, the string need not be split in half. It is usually enough if only selected bits are exchanged between
parents. It is only important that bit positions are not changed.

Mutation

In the evolutionary process, reproduction is enhanced with mutation. In addition to the properties inherited from
parents, offspring acquire some new random properties. This process is known as mutation. In most cases muta-
tion generates low-ranked children, which are eliminated in the reproduction process. Sometimes, however, the
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mutation may introduce a better individual with
a new property. This prevents the process of re-
production from degeneration. In genetic algo-
rithms, mutation usually plays a secondary role.
For very high-levels of mutation, the process is
similar to random pattern generation, and such a
searching algorithm is very inefficient. The mu-
tation rate is usually assumed to be at a level well
below 1%. In this example, mutation is equiva-
lent to the random bit change of a given pattern.
In this simple case, with short strings and a small
population, and with a typical mutation rate of
0.1%, the patterns remain practically unchanged

TABLE 124.2 Population of Second Generation

String Decimal  Variable Function Fraction
Number String  Value Value Value of Total
1 010111 47 1.175 0.0696 0.1587
2 100100 37 0.925 0.0307 0.0701
3 110101 53 1.325 0.0774 0.1766
4 010001 41 1.025 0.0475 0.1084
5 100001 33 0.825 0.0161 0.0368
6 110101 53 1.325 0.0774 0.1766
7 110000 48 1.200 0.0722 0.1646
8 101001 41 1.025 0.0475 0.1084
Total 0.4387 1.0000

by the mutation process. The second generation for this example is shown in Table 124.2.
Note that two identical highest ranking members of the second generation are very close to the solution
x = 1.309. The randomly chosen parents for the third generation are:

010111 — 47 110101 —» 53 110000 — 48
110101 — 53 110000 — 48 101001 — 41

which produces the following children:

010101 —21 110000 — 48 110001 — 49
110111 - 55 110101 -»53 101000 — 40

101001 — 41
110101 — 53

101101 — 45
110001 — 49

The best result in the third population is the same as in the second one. By careful inspection of all strings
from the second or third generation, it may be concluded that using crossover, where strings are always split in
half, the best solution 110100 — 52 will never be reached, regardless of how many generations are created. This
is because none of the population in the second generation has a substring ending with 100. For such crossover,
a better result can be only obtained due to the mutation process, which may require many generations. Better
results in the future generation also can be obtained when strings are split in random places. Another possible
solution is that only randomly chosen bits are exchanged between parents.

The genetic algorithm is very rapid, and it leads to a good solution within a few generations. This solution is

usually close to global maximum, but not the best.

Defining Terms

Backpropagation: Training technique for multilayer neural networks.

Bipolar neuron: Neuron with output signal between —1 and +1.

Feedforward network: Network without feedback.
Perceptron: Network with hard threshold neurons.

Recurrent network: Network with feedback.

Supervised learning: Learning procedure when desired outputs are known.
Unipolar neuron: Neuron with output signal between 0 and +1.
Unsupervised learning: Learning procedure when desired outputs are unknown.
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