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1 Introduction

for a broad usage of multilayer neural networks. This expectation was not totally fulfilled.
Due to local minima and "flat spots” it is difficult to find adequate solutions for many of
the practical problems. Sometimes, a solution can be obtained after more than a hundred
thousand iterations. Often, when the initial weights are chosen unfortunately, no solution
can be found. Many improvements were suggested for the backpropagation algorithm,
but problems with the convergency of the backpropagation algorithm are still prevailing.
Some researches have chosen an unsupervised training method like, WTA [4] with further
labeling. Interesting results were obtained with the ” quickprop™ [5] or cascade-correlation
| algorithm. Some researches were experimenting with the general regression networks [6],
v or probabilistic networks [7, 8]. In this work, other improvements for the backpropagation
‘ algorithm are proposed [9, 10] by a modification of the way how the neuron gain is
! computed. Interesting results were obtained, as it is shown in section 3 but many practical
problems still are difficult to solve using just the backpropagation algorithm. In section

When the backpropagation algorithm {1, 2, 3] was discovered, many researchers hoped
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4, the input space transformation is proposed for easy pattern classification. This way
the neural network training can be significantly simplified. Also the training procedure
is faster and simpler. In some cases the network can be designed analytically, as it is
_shown in section 5. In section 6 a very simple neural network is described, which can
be used for rapid prototyping. This concept uses the simplest feedforward version of
the counterpropagation network, originally proposed by Hecht-Nilsen {11} and then fully
developed by Zurada [12]. Further modification of the network is also described in section
6. This method is illustrated in a few practical examples, including the problem of the
two spirals.

2 Modifications of the gradient computation in the
backpropagation algorithm

The backpropagation algorithm, conunonly employed for the training of multilayer neural
networks, suffers from a slow asymptotic convergence rate. For the sigmoidal bipolar
activation function

2
) = ———————— — 1 1
fnet) 1 + exp{—Anet) (1)
the gradient (slope) is computed as a derivative of (1)
2 exp (—Anet) 2
= =0.5(1- 2
9 1 +exp (—Anet) 05(1-/%) @)
Derivative of Activation Function
Activation Function

Fig. 1. Modified sigmoidal activation function and its derivative using equations (1) and (2) for
bipolar neurons.

The activation function and it’s gradient are illustrated in Figure 1. Only a small
error propagates back for networks with large net values. Convergence is even slower
for neurons with high gains (steep activation functions). Typical cases for convergence
using the "XOR” neural network with A = 1.0 and n = 0.2 and randomly chosen initial
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weights are shown in Figure 2 where the best 10 of 20 randomly chosen weights were used.
For most cases, convergence was reached in less than 500 iterations. However, when the
initial weights are chosen unfavorably, it is extremely difficult to recover the proper state
during the learning procedure as shown in Figure 3. To begin with unfavorable weights,
the ncural network was trained into saturation and then the desired output were changed
to their opposite values. In most of these cases, the standard backpropagation algorithm
did not converge at all.

N°~ N . alaiaa s [P BN NP T NN
Standard Backpropagation i
) 32
5] m
: ] |
W 3
~ E E
107 L
103 S—— SN — —rr —
0 100 200 300 400 500
iterations

Fig. 2. Global crror as function of iterations for the "XOR” neural network using the standard
back-propagation algorithm with learning constant 3 = 0.2 and newron gain A = 1.0 for ten
best of 20 randomly chosen initial weights.

In the backpropagation algorithm, the weight changes are proportional to the error
propagating from the output through the slopes of activation functions and through the
weights. For large net values the derivatives of the activation functions, as well as the back
propagating error signals, are very small (Fig. 1). Convergence of the learning process
can be improved by changing how the error propagates back through the network. It is
proposed that for the purpose of error propagation, the slope (gradient) of the activation
function is calculated as the slope of the line connecting the output value with the desired
value rather than the derivative of the activation function at the output value.
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Fig. 3. Global error as a function of iterations for the "XOR” using unfavorable data. The
network was trained into saturation and then the desired outputs were changed to their opposite
values (maximally wrong values).

This is illustrated in Fig. 4. Note that if the output value is close to the desired
value, the calculated slope corresponds to the derivative of the activation function, and
the algorithm is identical with the standard backpropagation formula. Therefore, the
" derivative” is calculated differently only for large errors, when the classical approach
significantly limits error propagation.

After modifying the standard backpropagation algorithm, the convergence ratio was
greatly improved. Figure 5 shows results for unfavorably chosen initial weights (the same
weights used in Figure 3). However, when this modified algorithm was used with ran-
dom weights, (favorable starting conditions as in Figure 2), the rate of convergence was
slower compared to the convergence using the standard backpropagation algorithm. This
undesired effect of the modified algorithm is more significant for cases with small net
values and large output errors. In this case, the gradient g2 computed using equation
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Actual output

Desired output

Fig. 4. lllustration of the modified derivative computation using the slope of the line connecting
the points of actual output and desired output.

NQn N NP B NI WP W 1
] Modified Derivative - Equation 3
N -
S
s ]
Y
N -
107 -
107 v —r e
0 100 200 300 400 500
iterations

Fig. 5. Global error as a function of iterations for the ”XOR" neural network using the modi-
fied back-propagation algorithm using equation 3 for gradient computation with and the same
unfavorable starting weights as in Fig. 2
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Standard derivative Modified derivative

Actual output

Desired output

Fig. 6. lllustration of gradients gl and g2 obtained for small net values,

(3), is larger than gl which was obtained using equation (2) (as in the traditional back-
propagation algorithin). This is illustrated in Figure 6.
To cotnpensate for this effect, the effective gradient was computed using the formula

73 o2

eys = Ql,uwelnw 4

where g; is the slope obtained as the derivative of activation function (Eq. (2)) and g2

is the slope obtained using the modified formula (3). Equation (4) guarantees that the

larger of two gradients, gl and g2, will dominate. Figure 7 shows the results for the

"XOR” example with the same initial weights and learning parameters as in Figures 3
and 5, but equation (4) was used for computation of the effective gradient.

Similar results were obtained with other neural network structures such as binary
number classifiers, parity bit finder and others. In all cases, significant improvement of
convergence was noted, especially in networks with large neural gains and with unfavor-
able chosen starting weights.

It was also observed that in cases with small gains A = 1, modification of the gradient
computation did not improve the convergence. This is due to the fact that in cases where
the output values are far froin saturation, the slope coniputed usiug the modified method
(Figure 4) is smaller than the slope computed as a simple derivative which causes the
error to propagate slowly. This corresponds to lowering the elfective learning constant.

3 Input space Transformation

A single neuron separates the input space into two categories. The separation is done,
dependent on the input space dimensions, by line, plane or hyperplane. The multilayer
neural network inlerits this single ncuron feature. Therefore, in the first layer, input
patterns are always separated by lines, planes or hyperplanes. If input patterns are,
so call, linearly nonseparable, then a inultilayer neural network is required. Also, in this
case, the input patterns are separated in the first layer by lines, planes or hyper planes. In
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Fig. 7. Global error as a function of iteration for the "XOR” neural network using the effective

gradient (equati 1)). i i
s u:M M—.‘mw. %.: (1)). The same unfavorable weights and lcarning constant were used as in

many practical cases it is required to separate a cluster surrounding a certain exemplary
Mw:..m:“. To wovmnwao clusters, it seems to be more desirable to be able to separate clusters
y circle, sphere or hypersphere. This type of problewmns, are v i i
. s, ery diffi
neural networks. Y fcult to solve wsing
. The purpose of this work is to introduce a transformation of input patterns, such
that one m_m.zoiw_ type neuron is able to separate a cluster in the transformed input
wvw_nm. This task can be accomplished by transforming input space on the sphere where
each cluster can vn.w cut out by plane. In the similar manner as any fragment of an apple
surface can be ..wwm:« mmﬁ.unwpom single cut. A similar concept of using a sphere for easy
.vw:.ﬁ: separation was .:_.:oa_:n& by Kohonen [4]. The input pattern is transformed
”.-_:.b a mv__m:w_ rv_~ normalizing the length of the input vectors to unity. Unfortunately, in
his approach the iinportant information about the in i i .
put vector magnitud
not used for pattern recognition. guitude s lost and
. In order not to Fmo an information about input patterns, the dimensionality of the
:G:.._mvwno must be increased by one. Once the input space is transformed into a sphere
. . ’
or a _wcmnmvro-o. the radius of the sphere is fixed and cqual for convenience, to the
unity. In the case of n + 1-dimensional hypersphere with the fixed radius the number of
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independent variables (angles) is n. Therefore the simplest transformation approach is
to use the components of the input vectors of the input Cartesian space as angles of the

transformed hypersphere.
There are inany possible transformations possible

21 = sin (kxy)
29 = cos (kzy) sin (kz2)
23 = cos (kx1) cos (kxa) sin (kz3) (5)

2y = cos (ki) cos(kzq) ... cos (kxy 1) sin(kz,)
sng1 = cos{kxy) cos (k) ... cos{kzn-y) cos(kz,)

or
2y = cos{kay)
2o = sin (kzy) cos (kza)
23 = sin (kx)) sin(kz2) cos(kx3) (6)
2 = sin (ki) sin (kz2) ... sin(kz,-y) cos (kxn)
zn41 = sin (k&y) sin{kx1) ... sin(kz,-1) sin(kz,)

where 1, za, ...z, are Cartesian coordinates in the original input space and 21,22, ... zn,
za41 are Cartesian coordinates of the input patterns transformed on the hypersphere
of the n + 1 dimension. The k is the scaling factor equal to apax/(TMAX — TMIN)
where aprax is the angular size of the part of the sphere used, and zarax — TmiN i8
the maximum range of the input variable. If different values of k are used for different
dimensions then clusters are separated by ellipsoids, instead of spheres. Transformation
formulas (5) and {6) are only two examples out of mauy possible transformations to a
sphere in the n+1 dimension space. Neither equation (5) or (6} can be easily implemented
in hardware. In many practical cases such hardware implementation is not required,
because data can be easily transformed by means of the computer, before training or
recognition is taking place.

4 Design Example with Transformation of the Input Space

Let us consider a simple two dimensional case with three clusters to be separated as Fig.
8 illustrates. First task, is to estimate the center of gravity of each cluster. In example
from Fig. 8 these centers are: [5, 6], [-2.4, 3.8}, and [3,-5). Let us assume to use one quarter
of the sphere k = x/34. Using transformation (5) the centers of gravity in augmented z
space are given
-z1 = sin (kzy)
29 = cos (kz;) sin (kz2) )
z3 = cos (kzy) cos (kz2)

The separation planes should be normal to the vectors given by (7). Equations for
the separation planes can be easily found using the point and normal vector formula:

o -
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Fig. 8. Two dimensional input space with three clusters.
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Fig. 9. Network structure for classification of clusters shown in Fig. 8.

L6 (z-2E) =0 (8)
where zg .mu a point transformed from the edge of the cluster (see Fig. 8). From equation
(8) all weights for the first layer of the neural network can be found analytically as

0.4794 0.49550.7243 -0.9689
~0.2377 0.3603 0.9020 —0.9713 (9)
0.2955 ~0.4580 0.8384 —0.9801

Fig. 9 shows the neural network structure. One can see that the neuron in the second

W =
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Fig. 10. Input-output mapping of the network shown in Fig. 9 (a) mesh plot, (b) contour .v_op.

layer perform the ”OR” operation only. Fig. 10 shows the mapping from input x space
into output value y.

5 Simple neural network for classification purposes

Some advanced neural networks [13], known as general regression networks {6}, or prob-
abilistic networks [7, 8], require a number of hidden neurons equal to the number of
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Fig. 11. Feedforward version of the counterpropagation network.

training samples. A similar concept can be used for sinple neural network structures
where the number of the hidden neurons should be equal to the number of clusters.
This network for rapid prototyping is based on the counterpropagation network [11].
The siinplest form of this network can be used as an easy classifier. Such possibility was
mentioned by Wasserman [14] and then elaborated by Zurada [12]. Similar neural net-
works, which were not derived from the counterpropagation structure, were also, later,
independently developed (15).

- -1
: unipolar bipolar

Fig. 12. Network structure for the "XOR” problem.

The basic structure of the feedforward version of the counterpropagation network is
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shown in Fig. 11. [12]. This network consists of the Kohonen WTA layer with unipolar
neurons and the outstar Grossherg layer. When binary input patterns are considered,
then input signals are either —1 or +1. For the given cluster only one neuron, the winner,
in the hidden layer is activated. The weights of this neuron w; = x; are exactly equal
to the pattern corresponding to the center of cluster x;. If the binary input pattern z;
is applied to the network the net value for the j — th neuron is

nel = Sw.u.... =u—2HD(wj,=z;) (10)

where n is the dimension of the input pattern and H D(w;, ;) is the Hamming distance
between column vectors wj and £;. If the neuron is required to react also for the patterns
within a given Hamming distance 11D to the stored pattern, the threshold of this neuron
should be set to

E...:.H:I_I.NEU.:H:I_Iﬁ. (11)

where 11 Dj, denote the radius of attraction or radius of j — th cluster, and d; is the
cluster diameter. Thresholds in the hidden layer should be set in such way that only
one neuron in the hidden layer can be activated at a given time. The hidden layer has
an unipolar activation function. The higher the neuron gain in the hidden layer the
better the performance of the network, the best performance can be obtained with hard
threshold neurons. No activation function is required for the output layer or it can be a
bipolar activation function without a threshold (the threshold is set to zero).

The network shown in Fig. 11 can be also considered as an analog memory. For any
binary input (address) certain analog values (stored in the weights of output layer) can be
recovered. Moreover, input patterns (address) need not Lo be exact. The correct analog
value will be recovered from the memory if the input pattern is close enough (within
H D) to the actual stored address. Further modifications of the network shown in Fig.
11 are also possible. For proper operation, the input patterns need not to be binary as
suggested in {12, 15], but they can be analog vectors with the same maghitude as in
classical Kohonen layer [4], or the input pattern transformation, as shown in section 4,
can be used.

“I'he network, which was briefly described above, is very easy to design, and all weights
are given a priori. The weights in the first layer are equal to the input patterns, and
weights in the output layer are equal to the output patterns. Obviously, both input and
output patterns which are stored in the network could be the centers of gravity of the
stored clusters. Not all input or output patterns should be stored. The only parameters
which require some computations are the thresholds in the hidden layer. The value of
the threshold should be chosen accordingly to the diameter of a cluster using equation
(11). .

In case of pattern classification into two categories, the network can be further sim-
plified. Instead of setting the number of neurons in the hidden layer equal to the number
of patterns, the number of neurons in the hidden layer should be equal to the number of
patterns to one category. The output layer has just one neuron and to perform the "OR”
operation all of its weights should be equal to two, and the threshold should be equal
to one. This particular weight arrangement is chosen with assumption of the smallest
integer threshold and weights.
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Fig.13. Network structure for the parity four problem.

Such simple network can be used for rapid prototyping. The ”XOR” case can be used
as an Snm:.:_:a. Assume that patterus [-1,-1] and {1,1] should be classified to +1 category
and _.m_,.:s:::m patterns to the —] category. The network structure for the "XOR?” case is
shown in Fig.-12. Thresholds in the hidden layer are computed from equation 6 assuming
HD = 0. Note, that if this problem is design using the feedforward counterpropagation
network, then four neurons would be required in the hidden layer. Fig. 13 shows the

=n=3._ network structure for the parity 4 problem where the weights in the hidden layer
are given by

-l-1-1-1 11 11
_l-t-1 1 1-1-1 11
W= -1 1-1 1-1 1-11 (12)
-1 1 1-1 1-1-11
Also m.= this case only 8 neurons are required in the hidden layer while for counter-
propagation network 16 neurons would be required.

. Another illustrative example is the problem of the two spirals, which is known as very
difficult for the backpropagation network. Using the proposed approach, this problem
can be easily solved. Let us assume that the two spirals shown in Fig. 14(a) should be
separated into two categories. Let us also assume that the spiral marked with squares
should be classified into the +1 category and the remaining patterns into the -1 category.
Therefore, the number of hidden neurons is equal 28. Using the 8 level resolution for both
x and y axis, the three bits are required for each axis. For proper analog operation a
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Fig. 14. Problem of two spirals (a) - pattern distribution, (b) - network structure.

remainder of the AD conversion is also supplied as a fourth input for each axis. The
remainder is defined as

rem=abs |z — MU 2 b; (13)
i=0
Thus, the network has six binary inputs and two analog ones. The network structure
is shown in Fig. 14(b). Assuming HD = 1, thresholds for the hidden layer are set to be
equal five. Fig. 15 show the nonlinear mapping obtained the designed network.

6 Conclusion

Modification of the backpropagation algorithm using formula (4) with the combination
of (2) and (3) for determining of the slope of the g«?wsgw function .n:..!.n@ the con-
vergence of the learning procedure. The effect of this modified algorithm on the speed
of convergence was examined with various examples.

These results show that the standard backpropagation algorithm converges very
poorly, or does not converge at all, when the weights are chosen ::?<o_.wv_.< A.EE:-
mally wrong) and when gains on the neurons are high. llowever, results ...w_.oi .m.m.:mno:p
improvement with the modified algorithins. Note that for efficient classification of pat-
terns, the neural networks with high gain values A have to be used. In such practical
cases, the standard backpropagation algorithm has difficulty converging.
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1

I

Fig. 15. Input-output mapping for the problein of two spirals.

The described in section 5 procedure for two dimensional input space can be eas-
ily generalized for the multidimensional case. Original patterns in input Z space have
to be transformed into augmented space Z. Equations (5) or (6) can be used for the
transformation. Then the standard backpropagation method can be used for network
training.

As one can see, from the presented in section 6 exanples, the approach based on the
counterpropagation network is very fast and the resultant neural network is comparable
or even simpler than backpropagation networks.
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Abstract. Eye and head movement data, were recorded under head-fixed and
head-free conditions, and compared with theoretical results obtained using a non-
linear model of eye-head coordination. The model explains slow, or pursuit move-
ment correlated closely to target movement, and saccades, or quick phases of eye
movement. Eye movement under head-fixed conditions was modeled by an exter-
nally forced Duffing equation, whilst properties of head movement are described
by a second externally forced Dufling equation with lower eigen frequency. In
the more natural, head-free conditions where both eye and head movements are
used synergetically to pursue a visual target, the vestibulo-ocular reflex (VOR)
is represented by coefficients defining the mutual cou pling between these two os-
cillatory systems. In the present model, the oscillator that models eye movement
has an inhibitory infiuence on head movemgnt; head to eye coupling coefficients
are included to model the influence of the YOR mechanism., Individual eye and
head movement patterns in different subjects can be adequately modeled by al-
tering the coupling coefficients. In order to adequately sinulate those changes
introduced by microgravity conditions, the coefficients defining eye-head coordi-
nation (mutual coupling) must be changed. It may be hypothesized that such
changes in the neurovestibular system could introduce the instability in eye-head
coordination, which is known to lead to space sickness.

1 Introduction

Coordinated eye and head movements are employed extensively to direct visual attention
during everyday activity. Indeed, the eye may be considered the most active of all human

* Supported by a Whitehall grant $93-24




