Selection of Fuzzy Rules Using a Genetic Algorithm

Jerry J. Cupal and Bogdan M. Wilamowski
Department of Electrical Engineering
University of Wyoming
Laramie, Wyoming, USA

Abstract

A genetic algorithm was used to modify the members of a population of rules for a fuzzy
controller. In this work, the example of a truck backing toward a ramp was solved by the controller. An
error function was used to rank the members of the population, and the best members became the parents
of the next generation. Crossovers were done to further mix the new members, with additional mutations
done on individual rules of randomly chosen members. The algorithm proved to converge toward suitable
solutions of this problem, starting from 100 randomly chosen sets of fuzzy rules. The technique shows
great promise for the automatic synthesis of rules for fuzzy controllers.

Introduction

Fuzzy systems require expert intuition to define the membership functions and the fuzzy rules.
Most fuzzy controllers are robust enough to work amazingly well, despite the fact that often this expernt
intuition is far from optimum. Because it is often necessary and/or desirable to operate a fuzzy controller
in an optimum mode, there is an interest in developing techniques for the optimum design of these
controllers. Many researchers are attempting to find the optimum solutions for systems whose input-output
relations are known [1][2]. For these systems, the fuzzy controller can be trained in a similar way as
neural networks [3]{4][5] or more advanced methods based on orthogonal least-squares learning
algorithms[6]. One possible approach is to use quasi random search techniques through the fuzzy rule
tables looking for some optimum performance [7].

In this paper, a genetic search is used to find the best performance. The exampie of backing up
a truck to a ramp is used in this study. The problem is stated the same way as presented in {7] and [8],
including the same membership functions. The goal of the genetic search is to find the optimum set of
fuzzy rules. In fact, the search algorithm described here can be used to automatize the synthesis process
of fuzzy systems.

Problem statement

In the example of backing a truck to ramp, there is no predefined path for each truck location and
therefore the optimum steering angle is likewise unknown. Furthermore, a controlied object such as the
truck has a certain "inertia", so the correctness of the assumed control variables and not known for some
time. In our example, the truck could drive out of the parking lot or crash because of the effect of a wrong
set of rules.

The truck is moving back toward the ramp as shown in Figure 1. The motion of the truck can be
described by the following set of equations:

X4 = X - rsin(a,)
Y1 = ¥ + reos(a)) 1)

@, =& + B

I-814

where a is the truck angle, x and y are coordinates of the back of the truck, B is the steering angle, and
r is the incremental driving distance. A fuzzy controller for this problem would have three input variables
(o, x and y). However, it can also perform its’ function if the variable y is ignored since it is enough to
direct truck on the correct track toward the ramp. When truck is directed to the state with x = 0 and o
= 0, then it is only matter of time until it will reach the ramp (y = 0). The same approach was used in (8],
where y was not used as the input variable for controller. That is, its membership function was not
specified.

Figure 1. Top view of a truck backing toward a ramp. The ramp is located at the origin.

The membership functions for the inputs and the outputs are the same as in [8]. There are five
membership functions for the x input, and seven for both the a input and the output variables. As a
result, the fuzzy rule table consists 35 rules and each rule may has seven different levels. Consequently,
there are 35 = 10* possible combinations of rules. It is obvious that a random search is not practical.
Even a quasi random search as it was proposed in [7] would require a very long search time. The genetic
algorithm seems to be the proper method to obtain a solution to this problem. A genetic search is capable
of doing a parallel search of solution space, as opposed to a point-by-point search. By using a population
of trial solutions the genetic algorithm can effectively explore many regions of the search space
simultaneously, and therefore, it is less sensitive to becoming trapped in a local minima [9].

The genetic algorithm consists of recursively performing the following steps:

1. A given population is tested to rank the members of the population. Ranking is done on

certain criterium, usually some error function the measures how well the fuzzy system
performs its’ task.

2. The population is separated into winners and losers and the losers eliminated. The winners
are then reproduced to reestablish the population.

3. The new population is subjected to "Crossovers” where parts of the winners are randomly
exchanged.

4, The members of the population are then mutated, where some randomly chosen rules are

perturbed slightly.
As the algorithm converges, a population of better and better parents reproduce even better
children. The best of these, based upon the error criteria, is then used in the final fuzzy controlier.

I-815

Experiments
In the experiments done here, a population of 100 members was maintained in each new
generation. The members of a given generation were ranked using a cost or error function as follows:

N, N
Er- Y} (xmz + O.Iawz) + Yy D, (2)
5 , / =

where N, is the total numbers of trial runs make on a member of the population, x4 and ¢, are the
ending positions of the truck, and the driving distance D; is a measure of how far the truck travels as it
approaches the ramp. A particular run was terminated when the position error (the term within the first
summation) became less than unity. From Equation 2, it can be seen that the genetic algorithm attempted
to align the truck directly in front of the ramp, keeping the driving distance to a minimum.

The cost function was totaled for selected starting points of the truck. For the training process, it
was logical to choose values of input variables which correspond to the center values of membership
functions. Using the inputs x and o, a training set of 5 * 7 = 35 possible starting points were selected.
Because each starting point corresponded to the center of a membership function, initially only one fuzzy
rule was applicable. In this way, the rules that started the truck in the correct direction were quickly
determined. Each member of the population was ranked using the cost or error function.

After the population of a given generation was ranked, the losers were eliminated and a group
of the best individuals were recreated to reestablish a population of 100 members. Several cases were
tested; one group that recreated the top 10% of the original population; in another group, 20%. These then
became the parents of the next generation.

prsaceadeibacebitntosdsotuiciedive

(e)

Figure 2. Paths of the truck as the genetic algorithm converges. The truck starts at 35 different
positions. In this test, 10% of a population is retained, with 300 mutations in each
generation. Shown are the paths of the best member of the initial population(a) and then
after 10(b), 20(c), 30(d) and 40(e) generations. Also shown (in (f)) is the solution from
[8].

1-816

This new population was further altered by randomly crossing over (exchanging) one half of the
rules between members of the population. A total of 150 such exchanges were made. Then, a given
numbers of the individual rules were randomly changed one position in the membership function to add
further mutations in the new population. This number varied, in various experiments, from 100 to 3000
to investigate the effect on the convergence of the genetic algorithm.

Many different tests were run. In each, the same original population was passed through the
genetic algorithm, with only different number of children retained after each generation, and different
number of mutations within each population. The algorithm was allowed to run for 200 generations.

Discussion of results

All of the tests produced sets of fuzzy rules that did guide the truck to the ramp, although some
of the paths were certainly not the most direct. A plot of the best set of rules after 0, 10, 20, 30, and 40
generations for the best of these are shown in Figure 2. In this case, 10 members of the population were
used in recreation, and 300 individual rules were mutated in each new generation. After about 40
generations, the error did not drop significantly and the algorithm was for all practical purposes converged.
For comparison, the paths for the truck when the fuzzy rules are designed by an expert (8] are also shown
in Figure 2(f).

Figures 3 and 4 show the error of the best fuzzy sets after each generation. The algorithm seems
to converge rather slowly, reaching a steady-state error after 40 generations. The best solutions for all eight
tests after the algorithm reached its’ 200th generation are shown in Figures 5 and 6. It can be seen that
in most cases, the genetic algorithm can find a solution to this fuzzy controller problem.

3000 it S EI L IO U A S G T U i pum e Lo i e
~ best 10%
+ -100
+ -300
v -1000
+ -3000
§ 2000
[
W
_NN" |
\ \(N
1000 \H X *:*H‘l\ |
ﬂ**ﬂ""* ‘:v:: e
ST VRS Hyspresstvetad
|
0 T T ey [1'"""’""I""""""'J
0 10 20 30 40 50
iterations
Figure 3. Error function of the population for passes through the genetic algorithm. In these tests,

10% of a given population is retained, with 100, 300, 1000, and 3000 random mutations
given to each generation.

I-817

3000 | e
best 20%
+ -100
+ -300
+ -1000
+ -3000
s 2000
5 _
g
<
1000 e -
N e
0 g el el e e S 5 f e Sl o S G TN S B o e S vkt st el s s e D Bl sl s st Sl T B s i
0 10 20 30 40 50
iterations
Figure 4. Error function of the population for passes through the genetic algorithm. In these tests,

20% of a given population is retained, with 100, 300, 1000, and 3000 random mutations
given to each generation.

Figure 5. Paths of the truck for the best member of the 200th generation through the genetic
algorithm. In these tests, 10% of a given population is retained, with 100(a), 300(b),
1000(c), and 3000(d) random mutations given to each generation.

I-818

Figure 6. Paths of the truck for the best member of the 200th generation through the genetic
algorithm. In these tests, 20% of a given population is retained, with 100(a), 300(b),
1000(c), and 3000(d) random mutations given to each generation.

Conclusion

It has been shown that the genetic algorithm can be used successfully for automatic rule finding
in fuzzy systems. It was found from experiment that each time a good solution was found, but not the
necessarily the best one. Appartently, the algorithm converges to local minimas not far from the global
minimum. A disadvantage of the algorithm was that relatively long time was required for convergency.

References

1. J. Bezdek, "Fuzzy models - What are they, and Why," IEEE Trans. on F uzzy Systems, vol. 1, pp. 1-6, Feb. 1993,

2. M. Sugeno, T. Yasukawa, "A fuzzy-logic-based approach to qualitative modeling,” /EEE Trans. on F uzzy Systems, vol.
1, pp. 7-31, Feb. 1993,

3. S. Horikawa, T. Furuhashi, Y. Usikawa, "On fuzzy modeling using fuzzy neural network with the back-propagation
algorithm,"” IEEE Trans. on Neural Networks vol. 3, pp. 801-806, Sept. 1992.

4, D. B. Hertz, Q. Hu, "Fuzzy-neuro controller for backpropagation networks," Proceedings of WNN 92, pp 474-178, Aubumn,
AL, Feb. 10-12, 1992,

5. J. R. Jang, "Self-leaming fuzzy controllers based on temporal back propagation,” IEEE Trans. on Neural Networks vol.
3, pp. 714-723, Sept. 1992.

6. L. X. Wang, J. M. Mendel, "Fuzzy basis function, universal approximation, and orthogonal least-squares learning,” JEEE
Trans. on Neural Networks, vol. 3, pp. 807-814, Sept. 1992,

7. B. M. Wilamowski, R. S. Sandige, "Trainable Fuzzy Controller”, presented at ANNIE93 - Artificial Neural Networks in

Engineering, St. Louis, Missouri, November 14-17, 1993; also Intelligent Engineering System Through Artificial Neural
Networks, ASME Pres, vol 3, pp. 561-566.

8. S. Kong, B. Kosko, "Adaptive fuzzy system for backing up a truck-and-trailer,” JEEE Trans. on Neural Networks, vol.
3, pp. 211-223, March 1992.
9. David Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley, 1989,

I-819

L
: .
i i i \\\NW
o i 1\\\\‘“\\\\?\\\\ L *ﬁ‘ﬁ‘ m\\
R L e L i
. \m . : '\ o)
e e .
e L - - %‘Wﬁ
L e
T

| .
‘ e
e

