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Abstract

The proposed siecpest descent retrieval algorithm is shown 1o improve the recovery of stored patterns
in autoassociative recurrent neural memories. The algorithm implements the steepest reduction of the
compulational energy function rather than an ordinary random and unqualified update. The experiments
indicate that this update mode is the more efficient when compared to the conventional asynchronous update.
Specifically, it performs beiter in recovery of vectors at smaller Hamming distance and in rejection of stable

but spurious memories.

Introduction
Consider a fully connected autoassociative neural memory consisting of n bipolar neurons. Assuming

that the memory network updates in a discrete-time mode and its outputs are one of the 2° bipolar binary n-
tuple vectors, considerable insight into its performance can be gained by evaluating its energy function.
Notably, the asynchronous recurrent update never increases the energy, and the state transitions terminate in
one of the local energy minima located at cube vertices.

The memory updates at the i-th output are produced by the asynchronous vote of all neurons but the
i-th. Intuitively, the degree of "incorrectness" of the i-th neuron should be given priority so that the bits with
higher probability of error are updated first. Obviously, the sequence of updates produced by this method is
rather essential since once the i-th bit has been corrected, it later participates in subsequent "votes" on bits other

than itself.
One natural measure of the probability of error of the i-th memory bit is the value of the activation

level at its neuron input. The larger its absolute value is for the neuron that will be updating, the larger will
be the resulting decrease of the network energy performed by this update. This paper makes use of the steepest
decent energy update scheme, thus introducing the error correcting scheme for bits with high probability of
error. This, in turn, improves the efficiency and robusmess of retrieval process.

Storage Algorithm and Energy Function
Autoassociative memory involves single layer neural network with feedback as it is shown in Figure

1 [1). Its architecture is based on the Hopfield network [2]. For this memory patterns are encoded using the
simple method of computing the autocorrelation matrix for each of the bipolar binary pattern s, to store. The
weight matrix is then computed using the superposition principle

?
W= ss/-pl (M

m=1
or, In matrix notation
W=-S5S8"-pl (2)

where S is the rectangular p*n matrix encoding p paitemns of size n. Matrix W is symmetrical with zero
elements on the main diagonal. The energy function for such system can be expressed as [3]:

E(v) - - 51 v'Wy (3)
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Fig. 1. Network structure of autoassociative memory

Note that the simple storage algorithm (1) or (2) results in a network without self-feedback for
individual neurons and without the biasing weights adjusting the threshold. Such network structure is closely
related to the definition of the network’s energy given by equation (3). The system energy for a given vector
v can also be computed as a sum of energies for each pattern to be stored

E(v) - f: E(v) “

{=1

where

E(v) - - —;— v‘(s,s,’ - I)v )]

Note that for binary bipolar vector we have ¥Iv = n, where n is the size of the network layer. Also
v's = n-2 HD(v,s), where HD(v.s) is the Hamming distance between binary vectors v and s. Each component
of the energy function given by equation (5) can therefore be expressed as a function of the Hamming distance

HD between a stored
pattern §; and a given vector v as

E(v) - - % [(n - HD(v5) - n ] ©6)

where n is the size of vectors v and s,. As a result, each component of the energy function (6) has a shape of
an inverted parabola with minima at s; and at the complement of s;, i=/2,.p as it is shown in Figure 2.
Combining equations (4) and (6) leads to

P
E®) - - Y [n* - n + 4HD¥(v.5) - HD(v,s) | M)

i-1

or
P 1
E(v) =2 z(n —H”(V.S,))H“(V,Sl) - pn(n ) (8)

-1
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Obviously, when many patterns are stored, a rather complicated energy surface is fqrmed with many
local minima. Those local minima are produced at the locations of stored patterns s; and at its cor_nplapcms.
At the same time, many spurious local minima of the energy function are formed. Their presence is seriously

detrimental for memory's performance.

Steepest Descent Retrieval Algorithm .
The encoded information is retrieved form memory by applying an initializing vector (o the input and

letting the network compute the output. Then, the updated output is supplied to the input (see Figure 1) and
a new output is computed. This process is repeated until the steady-state condition is reached. This
"synchronized" updating very often leads (o oscillations between two or more states with the same energy, and
a local energy minimum may never be reached [4). In order 1o avoid these local oscillations, the
"asynchronous" updating has been introduced. At one cycle, only one randomly chosen output is allowed to
change under this update rule. This sequence of updates converges to the one of the minima without
oscillations. :
The "asynchronous" updating has the following disadvantages:

1. It is slow since randomly chosen output is not always the one leading to the energy minimum via the
shortest path.

2. When two neighboring minima with the Hamming distance of unity have the same energy value, the
asynchronous updating process typically enters oscillations.

3. Some stored memory states with "weak" minima of energy surface may be nonrecoverable.

In order to eliminate some of the disadvantages of a conventional asynchronous updating the following
modification is proposed. '

Instead of randomly choosing an output for updating, the output with maximum gradient of the energy
function is chosen. This way the retrieval process requires less steps and also the retrieved pattern is closest
(most similar) to the applied vector v. The standard asynchronous updating process, in many cases, may lead
to a pattern which is very far from the applied input. Indeed, since the energy gap between the initializing
pattern and its closest stored prototype vector is fixed, updating with large energy increments naturally leads
to the retrieval of vector which is closest to the key vector in the Hamming distance sense. The gradient of the
energy function is given by

V,E(v) - - Wy ®)

and each of the components of the negative gradient vector is computed at each neuron

net, = w,v (10)
where w; is the vector of weights fanning in the i-th neuron. Using equation (1) and knowing that s'v = n -
2 HD(v,s), equation (9) can be rewritten in the form:

V,E(v) - pv - Zp:s(n - 2 HD(s,v)) (11)

i-1

Obviously, the output state can only change when its product of net; v; is negative. Under the steepest gradient
descent rule the strongest "driving power" for updating has the neuron with the smallest value of net; v,, and
this neuron is chosen for updating. Only in the case when two or more neurons have the same value of nety;
the output chosen randomly between two. The updating process continues while

max (net,v,) < a, (12)

i-1..n
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is valid. In simplest case oy, is assumed 10 be zero. The updating process i‘s tcrr-ninated if the lo.west of all ne,
Vv, 2 O, reaches the positive value. There is a further possibility for xpodxﬁcauon of ‘the uantmg process by
setting some negative value (o @, for earlier termination of the updating process. This way improved pattern
recovery can be obtained. For example, if many patterns are stored in the memory aqd two of them are close
together (their Hamming distance is equal one) and the energy for these two pattems is different, then usua}ly
only one pattern with the smaller energy is recovered. However, by setting negative value (o @, thet upda'Ung
process can be terminated if the output vector reaches the stored pattern with the large{ energy function. Since
in the proposed updating scheme in each cycle the output changes within the Hamming distance of one and
it uses the "shortest way" for choosing the neuron. The recovered pattern is therefore always the closest to the

input pattern in the Hamming distance sense.

Example 1
Ixample 4
stored patterns
£1 1 -1 -1 1 E= -4.0 HD= 0O 2 stored patterns
€2 -1 -1 1 1 E= -4.0 HD= 2 ¢ 1 1 -1 -1 : = -4.0 HD=0 2 3 3
£2 -1 -1 1 1 = -4.0 HD= 2 0 1 3
weights 3 -1 1 i 3 =-4.0 HD=3 1 0 2
0 0 -2 0 #4 -1 1 -1 -1 E=-4.0 HD=3 3 2 0O
(o] 0 0 -2
-2 0 0 0 weights
o] -2 0 0 0 -2 -2 0
-2 0 0 -2
number of retrjeved patterns: -2 0 0 2
#1 #2 tlc t2c spurijous 0 -2 2 0
asynchro. 245 254 250 251 0
grad(0) 265 249 261 225 0 number of retrieved patterns
grad(-1) 290 236 251 223 0 €1 #2 #3 14 tlc #2c #3c #4c spurious
grad(-2) 65 52 79 S5 749 asynchro. 1 0391 0 1230 ¢ 377 0
grad(0) 192 52 159 67 216 55 188 71 0
grad(-1) 188 71 164 73 202 77 167 58 0
Example 2 grad(~2) 184 74 160 70 211 66 185 50 0

stored patterns
1 -1 -1 1 1 E= -6.0 HD= 0 1 Example 5
2 -1 1 11 E= -6.0 HD=1 O
stored patterns

weights #1 '+ i 1 1-1-1 1 1 1 E=-24.0 HD=G 3
0 0 -2 -2 2 1-1 1 1 1 -1 1-1 1 E=-28.0 HD=13 O
¢ 0 (] 0
=2 0 0 2 iumber of retrieved patterns
-2 0 2 0 #1 #2 #lc #2c spurious

asynchro. 234 168 156 202 240
number of retrieved patterns: grad(0) 249 271 239 241 0
grad{(-2) 167 170 176 163 324

#1  #2 tlc #2c spurious

asynchro. 0 612 387 0 1
grad(0) 266 220 264 250 0 Example 6
grad(-1) 285 239 243 233 0
grad(-Z) 250 259 244 247 Q stored Pacterns
£l 1 1 1 1-1-1 111 E=-24.0 HD=0 3 5 4
Examplae 3 #2 1 -1 1 1 1 -1 1-1 1 E=-28.0 HD=3 0O 6 §
3 -1 1-1-1 1~-1=-1 11 E=-40.0 HD=5 6 O 3
stored patterns #4 1 ! 1 -3 1 ~1-1 1-1 E=-24.0 HD=d4d S 3 0
£ 1 ~-1-1 1 E=-4.0 HD=(Q 2 3 €5 1+-1 1 1-1 1-1 1-1 E=-32.0 HD=4 S 7 ¢
€2 -1 -1 1 1 I=-40 HD=2 0
3 -1 1 1 1 £=-6.0 HD=3 1 o number of retrieved patterns
. $1 #2 #4314 5 tlc t2c t3c td4c #5¢ spurious
weights asynchro. 78 16 132 72 44 9 g 181 56 86 1318
0 -1 -3 -1 grad (0} 39 0 334 56 60 43 0 335 49 84 0
-1 0 1 -1 grad(-2) 30 39 146 23 51 29 €5 137 28 67 385
-3 1 0 1 grad(-4) 12 41 79 13 49 11 25 96 25 S50 593
-1 -1 1 0 grad{~§) 6 11 54 4 32 9 13 53 5 36 777

grad(-8) 7 § 28 2 10 6 6 30 3 13 887
number of retrieved patterns

t1 #2 13 #lc #2¢c 13c spurious
asynchro. 2 1 498 1 0 498
grad{(0) 0 0 495 0 ¢ 505
grad(-1}) 203 130 167 199 149 152
grad(-2) 188 129 164 202 150 167

[eleReoNe)

Examples - All retrieval processes were performed with 1000 randomly choscn initial patterns. The following symbols are used: E - encrgy,
HD - Hamming distance between stored paucrns, #1, #2, ... #p - stored parterns, #lc, #2c, ... #pc complements 1o the stored patterns,
asynchro. - conventional asynchronous updating, grad(a,) - gradient based method different a,, parameters.
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Experimental Results

In order to illustrate the performance of the retrieval algorithm six compu{ational cxaqlplcs are shown
below. In all cases patterns were stored in the memory using autocorrelation encoding as dcsmbeq carh.er. For
the first two examples, a four dimensional network is used with two stored patters. The Hamming distance
between stored patterns equals HD(s,.s,) = 2 in the first example, and in the second 'cxamplc HD(s,s,) = 1.
In all examples 1000 randomly chosen initial patterns were used and both convcnuonal‘asynchror‘lous and
gradient based retrieval methods were used. Different values od o, were used for gradient updating. The
updating process converges to stored patterns (#1, #2, ... #p), to complements of stored patterns (#1c, #2c, ...
#p) or 1o spurious states. . o

In case when only two pattemns with HD = 2 are stored both "asynchronous" updating and ' gradxf:nl
based" updating methods are working properly (Example 1). In case when HD = / the asynchronous updating
fails, but the proposed retrieval algorithm works correctly (Example 2). When more patierns are stored, the
memory becomes heavily overloaded and “asynchronous" updating is able to recover only a limited number
of patierns (Examples 3 and 4). Note that by adjusting the threshold parameter a,, one can control the number
of patterns which can be recovered. In Example 3, pattern #2 has the energy value E=4 and pattern #} has
the energy E=-6. Since the Hamming distance between patterns #2 and #3 is of unity value, pattern #2 is not
at local minimum. The proposed algorithm with @y, = -2 is able to recover this pattern. Similarly in the same
example pattern #3 is within the Hamming distance of one to the complement of #1, and asynchronous
updating has difficulty recovering it.

The other two examples are related to the nine dimensional network with two and five patterns stored.
With larger network sizes, the conventional asynchronous algorithm is not even able to properly recover each
of two stored patterns. In Example 5, for instance, asynchronous updating converge to spurious states in 24%
of the cases cases. When the gradient based method is used with oy = 0, all stored patterns are correctly
recovered. A similar result was obtained in Example 6 with five patterns stored.

Conclusions

The proposed retrieval algorithm requires only a reduced number of updating cycles approximately
equal to the Hamming distance between input and the retrieved pattern. For small networks it is three to ten
times faster than "asynchronous" updating. For a larger network the convergence is even better. The problems
of convergence 10 spurious states under the conventional update scheme have been emphasized in the paper
by us using overloaded memory. This has been done deliberately both to magnify the difficulties encountered
with the conventional update scheme and 1o illustrate the benefits of the proposed approach.

The algorithm allows for gradual control of the termination of the updating process by changing the
O, parameter. Therefore allows it to recover patterns stored in the memory which are not necessily at the local
energy minimum. Very promising results were also obtained when the proposed algorithm was used as the
retrieval algorithm in the contnuous-type recurrent networks.
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