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ABSTRACT:

The backpropagation algorithm is well known as the best alternative
developed so far to train multilayer feedforward neural networks.
However, as a deterministic method based on a gradient descendent of
an error function, it has some limitations on the convergence speed.
This is due to either the presence of large flat plateau or local minima
in the topography of the function surface. In order to overcome these
limitations, several variations and alternatives to this method have
been proposed. For example, a common solution is to reinitialize the
training every time a local minimum was found. Stochastic procedures
such as the annealing method, and other combination of methods have
already been applied. In this paper, two new methods were developed
by introducing stochastic elements within the weight update
procedure. Rather than being a batch process, the random factor
happens on real time, being concomitant to the deterministic process,
what may save some important training time. In this way, not only
higher but also faster convergency were achieved. The proposed
modified algorithms were experimented with the XOR problem and
the results obtained are reported and compared to the
backpropagation.

INTRODUCTION

The backpropagation (Werbos, 1974)(Rumelhart, McClealland, 1986) is one of the
best and most used algorithms developed so far to train feedforward multilayer neural
networks. However, as a deterministic gradient descendent algorithm, it has
limitations on its speed and quality of convergence. The slow speed has been
attributed to the presence of large flat plateaus on the surface of the error function
while the quality of convergence is dependable on the presence of several local
minima on this same surface (Fahlman, 1988)(Werbos, 1993). These problems
become even more evident as the complexity of network and the size of the
application increases.

Several modifications have been proposed in order to overcome these obstacles
and make the algorithm more efficient. To mention some, we have the momentum
method (Silva, Almeida, 1990), quickprop (Fahlman, 1988) and modified derivative
(Wilamowski, Torvik, 1993). Some others interesting kind of approaches involve the
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of random processes within the backpropagation algorithm. A common way to
introduce randomness in the process is to restart the training with a new set of
random weights every time it fails to give an appropriate solution (Kolen, 1988). In
spite of the fact that this may improve the quality of convergence, it seems
unpractical and time consuming when large problem applications are considered.
Rather than introducing stochastic processes in a batch mode as suggested by the
procedure above, real time introduction of stochastic elements have also been
proposed. Some random factor are introduced and they are concomitant with the
steps of the deterministic process. Some of the modifications that have been proposed
are : addition of noise to the weights during training (Von Lehmen, 1988), stochastic
weight adjustment rule (Hanson, 1990) and simulated annealing based modifications
(Owen, 1993). The idea is to achieve better solutions by somehow getting out of
local minima.

In this paper, some variations of introducing random processes within the
backpropagation are proposed and investigated. The resultant algorithms are
compared to the standard back propagation in order to evaluate the importance of
random factors for improved convergence.

RANDOM SELECTION OF WEIGHTS

Several different modifications were tested and compared with the standard
backpropagation. By standard backpropagation we mean that it has no momentum
factor and that the patterns were presented always in the same sequence.

One modification consists on randomly changing the sequence in which the
patterns are presented during training. This procedure is already widely used but it
was here included for comparison.

Other modification consists on randomly select the weights to be updated. Instead
of being always updated in each step, weights are updated one by one in a random
manner. In this way, each time a pattern is presented not all weights are updated as
usual but just the randomly selected ones. In order to keep track of the number of
calculations involved in the process, one iteration is considered when the same
number of weight updates occur as if it was a standard backpropagation iteration.

The standard backpropagation technique was able to converge only in 60% to
70% of cases depend on the initial randomly chosen weights. With suggested
modifications process was able to converge in 85% of cases. The results were
observed in 200 trials for each category. The problem used was the classical XOR for
a network with two neurons in the hidden layer. Also the number of required
iterations were slightly reduced. Fig. 1 shows errors as a function of iterations for
standard backpropagation approach. Fig. 2 Shows errors as a function of iterations
for case of random pattern presentation, and Fig. 3 shows error as a function of
iteration for the case of the random selection of weights. All comparison was done
using classical exclusive OR example. The error was defined as the sum of the
squares of the errors for each output for each iteration. One iteration was defined as
the cycle where all patterns are presented. The terminating error was chosen to be
01.
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RANDOM FACTOR IN LEARNING CONSTANT

Other modification uses a random factor within the learning constant. Each time
the derivative De/Dw factor reaches a low threshold value, the learning constant
starts having a uniform random distribution around its central value. The lower the
value of De/Dw, the higher the range of the distribution. As the error gets more
stable the wider ranger of the learning constant can be assumed. On the other hand, if
the derivative De/Dw has a large value than mean value of the learning constant is
used. In this way, the average value of the learning constant remains the same, but
the probabilistic distribution around this average increases as De/Dw decreases. The
learning constant is computed from the following equation :

dE
dE random(d—v;)
c=c¢, +(random(2)—1)exp(—a—)—T—— )
w —

dw

Fig. 4 shows errors as a function of iterations for the case when learning constant
is ¢=0.3. Figure 5 and 6 show similar results for the average learning constant c=7.
One may observe very significant improvement in the learning speed.

Table I show the convergence in percentage and the average speed of
convergence in number of iterations. In this table, all four algorithms used a learning
constant (or its average) of 0.3.

TABLE I: Convergence (in %) was estimated using 200 trial runs and Iteration required to reach an

error below 0.1. This also was estimated based on the 200 runs. When process did not converged
1000 iterations were used for computation of the average. In ail cases the learning constant ¢ = 0.3
was used.

Algorithm Convergence Iterations required
Standard Backpropagation 61% 28}

Random Selection of Patterns 90% 627

Random Selection of Weights 85% 650

Random Factor in Learning Constant 99% 500
CONCLUSION

It can be noted that all three modifications improved either the convergence
quality or speed. The random presentation of patterns seems important to improve
the probability of convergence and speed. The random selection of weights to be
updated also seems to have influence on both. Certainly, it is the proposed
introduction of the random factor within the learning constant that caused the most
important changes in both the convergence and the speed.

The results suggest that random factors, when properly designed to operate
within the backpropagation, may not only improve the quality of convergence but
also speed up the process. This suggests that random factors also have an important
role on the plateau regions as well as in the local minima. Further research is
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suggested in order to define how properly these modifications should be designed.
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