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MODIFICATION OF THE BACKPROPAGATION ALGORITHM
FOR FASTER CONVERGENCE
(extensive summary)

Lisa M. Torvik and Bogdan M. Wilamowski
Department of Electrical Engineering
University of Wyoming
Laramie, Wy 82071

Introduction

The backpropagation algorithm commonly employed for
the training of multilayer neural networks suffers from a
slow asymptotic convergence rate. In this algorithm the
weight changes are proportional to an error propagating from
the output through the slopes of activation functions and
through the weights. For large signals (net values) the
derivatives of the activation functions are very small (Fig. 1)
and the back propagating error signal is also very small.
Under such conditions the output can be maximally wrong
without producing a large error signal. As a consequence,
the learning process and weight adjustment can be very
slow. During the learning procedure, the competitive
patterns can push an output to a maximally wrong value
lowering the error signal. In this case it is extremely
difficult to recover the proper state during the learning
procedure. Basically two different approaches have been
developed for improving convergence of the learning
process:  modification of the activation function and
modification of the activation function slope calculation for
erTor propagation.

Modification Of Activation Function

The activation function is modified in such way that
even for very large net values the derivative of the activation
function never drops to a very smalil value. Thus an error
will always propagate back. This modification was done by
adding an additional term to the equation that describes the
sigmoidal function.

f(net) = tanh( 0.5 A net) + ctnet 1)
The derivative of the activation function is therefore shifted
up eliminating small derivative values. The activation

function can be altered a number of different ways. In this
work a few other cases were also investigated.
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Modification Of Backpropagation Algorithm

Convergence of the learning process can be improved
by changing how the error propagates back through the

~ network. With a standard sigmoidal activation function, only

a small error propagates back when the neuron is in a
maximally wrong state. This is a consequence of using the
steepest gradient method for calculating the weight
adjustments. For the purpose of error propagation, the slope
is calculated from the line connecting the output value with
the desired value rather than the derivative of the activation
function at the output value. This is illustrated in Fig. 2.
Note that if the output value is close to the desired value, the
calculated slope corresponds to the derivative of activation
function, and the algorithm is identical with standard
backpropagation formula. Therefore, the "derivative" is
calculated differently only for large errors, when the classical
approach significantly limits error propagation.

Results Of Computation And Conclusion

191

This modification of the activation function results in
a reduction of learning time by a factor between 1.5 and 2.5.
Figures 3 and 4 show the error during the learning procedure
for an "Exclusive OR" example with a learning constant of
0.3 and A = 1. Values of the o parameter used in equation
1 were set 0.0 and 0.05. Note that a=0 corresponds to a
standard sigmoidal function used in the backpropagation
algorithm.

Modification of the backpropagation algorithm using
different methods of determining the slope of the activation
function enhances the convergence of the learning procedure.
Experiments using the three layer feed forward network (one
hidden layer) have shown that substantial improvements can
be obtained if the slopes in the last layer are computed using
the modified algorithm. Modifying the activation function
slope computation in the hidden layer did not significantly
affect learning convergence.
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Improvement was especially significant when the output
neurons were initially set to maximally wrong states (the
system was initially trained for maximally wrong values).
After setting these unfavorable initial weights, the neural
network was trained with the standard and the modified

Figure 1. Standard binary sigmoidal activation function and
its derivative.

Figure 2. MHlustration of the modified derivative
computation using the slope of the line
connecting the points of actual output and
desired output.

Figure 3. Global error as a function of iterations for the
Exclusive OR example using the standard
activation function and backpropagation method
with A = 1 and learning constant y = 0.3,

Figure 4. Global error as a function of iterations for the
Exclusive OR example using the modified
activation function with o = 0.05 (Equation (1))
and backpropagation method with A = 1 and
learning constant ¥ = 0.3.

backpropagation algorithms. The resuits are shown in
Figures 5 and 6. It is illustrated that the standard
backpropagation aigorithm does not converge at all while the
modified backpropagation algorithm does converge and gives
good results.

Figure 5. Global error a as function of iterations for the
Exclusive OR example using "maximaily wrong"
initial weights, standard activation function A =
1 and learning constant y = 0.3,

Figure 6. Global error as a function of iterations for the
Exclusive OR example using "maximaily wrong"
initial weights, standard activation function and
modified method for derivative computation (Fig.
2) A =1 and learning constant ¥ = 0.3.
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the points of actual ourput and desired output.
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