MODIFIED RELAXATION METHOD FOR SOLUTION
OF CONTINUOUS RECURRENT NEURAL NETWORKS

Bogdan M. Wilamowski and Stanley M. Kanarowski
Department of Electrical Engineering
University of Wyoming
Laramie, WY 82071

ABSTRACT

The derivation of a modified relaxation algorithm is presented
followed by demonstration examples. The algorithm converges very
well for continuous recurrent neural networks with both low and high
gain neurons. This cnables one to simulate recurrent Hopfield
networks with both "soft” and "hard" continuous activation functions.
The algorithm is suitable for large systems since the computational
effort is proportional only to the system size, in contrast to the
commonly used Newton-Raphson method where power relationships
exist.

I. INTRODUCTION

Signals in recurrent neural networks can propagate in both
directions, contrary to feed forward networks. This can create
oscillations or upward latching in certain stages. One layer recurrent
neural networks which have the ability to latch up are known as
Hopfield networks. This concept is extended to single or multlayer
associative memories. Recurrent neural networks such as Hopfield
networks [1] are used for solving many practical problems including
optimization (2], storing and retrieving patterns [3], solving linear
equations systems [4], linear and nonlinear programming [5] and
other related problems as listed in {6).

Such systems are usually difficult to analyze. There are
several known approaches. One group of approaches describe
networks by a set of differential equations and use one of the many
methods for solving differential equation sets in the time domain. The
simplest approach uses the forward or backward Euler formula. To
avoid numerical instability, the time step in this method of transient
analysis should be very small. This requires a large amount of
computation before the steady state condition is reached. Another
possible approach is to apply the Newton-Raphson algorithm, which
is commonly used for analysis of electronic circuits. This method
requires solving a large set of linear equations at each iteration step.
Only a few iterations are needed before the solution is reached,
however each iteration is very computationaly intensive. In contrast,
the relaxation method is the simplest to use, but it will not converge
for neural networks with high neuron gains when used as described

in {7]. In addition, the convergence problem is more severe in larger
networks.

In this paper the extension of "asynchronous” updating for
continuous recurrent networks is discussed, - followed by two
modifications of the relaxation method. The paper then shows several
numerical experiments. Finally, the paper concludes that with the
introduced modifications to the relaxation method, the analysis of
recurrent networks with both high and low neuron gains converge
well.

CH 3381-1/93/801.00 ©1993 IEEE

II. ASYNCHRONOUS UPDATING

The relaxation method, as it was presented in [7], uses the
following formulas for updating voltages in unipolar recurrent
networks:

W . L M

Gl‘. g(wﬁvf + i..)

and
kel 1

vl
1+ exp(— luf")

@

where v, and u, are input and output voltages of i-th neuron. When
these formulas are used for neurons with high A coefficients (high
neuron gains) then the computation process does not converge [7]. In
this paper we have experimented with the asynchronous method of
updating voltages. This means that at each iteration only a voltage on
one neuron output was allowed to be changed, while the voltage
values on all other outputs were maintained. Using this simple
modification of the original relaxation formula, very fast convergence
was possible for both low and high gain neural networks.

Figure 1 illustrates the convergency ratio for a two bit analog
to a digital converter with x = 1.3 V. When A = 1.0 (Fig. l.a), the
system converges well. but with A = 10.0 (Fig.1.b) the solution is not
reached.

Figure 2 illustrates the convergency for a two bit analog to
digital converter to converge x = 1.3V with (a) A =10, (b)A =100
and (c) A = 100.0 As one can see from Figure 2, the simple
modification results in the good program convergency even for very
large A. This is because the Hopfield network was used in these
experiments. The Hopfield network is a special case of the standard
one layer recurrent neural networks. In the Hopfield networks the
weight matrix has to be both symmetrical and have no connections
between inputs and outputs of the same ncuron [1]. Such networks
will always converge to certain states which are located at the corners
of the (-1,1) hypercubes.

General recurrent neural networks with one or more layers
usually do not converge when the asynchronous updating is applied.
From our numerical experiments we have concluded that the

1081

1.0 A i i Lusrssrascd 1 A A

outputs
&

A=10 x=13V

04 - r

02 - .

00 L ——
0 10 20 30 4 50 60 70 80
iterations

8;

100

0.8 -

outputs

0.6 -

04 -

02 A

0.0

0 10 20 30 4 S0 60 70 100

iterations

Fig. 1. Output results for a 2-bit A/D converter with x = 1.3 converging to the

bimmw using the standard relaxation technique: (a) A = 1.0; (b) A

asynchronous updating does not work when the solution vector is
located far from the comers of the (-1,1) hypercube.

IIl. MODIFICATION OF RELAXATION ALGORITHM

The charge conservation principle [8), implemented in the
CHARCO program [9), is one of the most efficient methods for
circuit analysis. This algorithm for transient analysis of integrated
circuits does not require solutions of equations at cach iteration step
and thus only the explicit computations are required. For example, in
the case of medium size circuits, (20 MOS transistors), the algorithm
is about 100 times faster than the algorithm used in the SPICE
program. For large circuits the comparison is even more favorable.
Obviously this algorithm has some other drawbacks.If the charge
conservation algorithm is applied for recurrent neural networks, then
at cach iteration step the unbalanced current of each capacitor is
computed using equations:

du. »
cur, = C‘._i - 2wijv,. -G, + i 3
dt j=0
where
G =Y w, +g @

i

This current cur, is charging or discharging the corresponding
capacitor depending upon it’s sign. Assuming a small time increment,
the corresponding voltage change on the input nodes can be found
using: ’

At cur,
C,

Au, - ®)

10)) A L L . A i i

0.8 A

outputs

A=10 x=13V .

|
il |

0 10 20 30 4 S0 60 70 8 9 oo
iterations
10 1 . , , A A , :
g 08 -\ ’ -
-
0.6 1 5
A=100 x=13V
04 - -
02 - . o
0 10 20 30 4 S0 6 70 8 9% 10
iterations
1.0 . A . ; ; ; \ X X
a J
3 i .
§' 08 I
-3
0.6 -
A =100.0 x =13V
04 L
0.2 - L
L0 /\ v T y T . y r r v
0 10 20 3 4 S50 6 70 8 % 10

iterations
Fig. 2. Output results for a 2-bit A/D converter with x = 1.3 converging to the

binary state 0] using the asynchronous updating technique: (a) A = 1.0; (b)
A = 10.0; (c) A = 100.0.

The above algorithm will converge if the time increment At
is chosen small enough. One can prove that if the value of At is equal
to the time constant of the input node than the computation is
equivalent to the relaxation algorithm. Thus, the relaxation method,
as described in [6], is a special case of the method, based on the
charge conservation principle. Therefore, like the relaxation method,
the algorithm with At=t will not converge for large values of neuron
gain A. To assure convergence, At in equation (5) should be reduced
so that the voltage change at each iteration step is small. In the case
of recurrent neural network, a further simplification of the algorithm
is possible since only a steady state solution is required. In addition,
one can prove that the relaxation formula can be useful if the results
obtained from equation (1) are than modified in the following way:

naw old u‘_ou)

R

©

i

where A; is the gain of the corresponding neuron and u™** is obtained
from the relaxation formula (1). The one in the denominator of (6) is
required to limit the voltage change for neurons with very small

1082

gains. Neurons with the unipolar activation functions (2) will always
have a gain A, smaller than A/4. Instead of using the maximum gain
of A; = M4, it is possible to speedup the computation process and still
guarantee convergence. This is done by computing the gain of each
neuron at every iteration step using the derivative of the activation
function:

a A=100 x=13V
A~ - AV, (1 -)] o4 - L
. 02 - r
Two modification of the basic relaxation formula are possible. 20 Y R . . . y ' '
Both use the equation (6), the first modification uses the fix neuron 0 10 20 30 4 S50 6 70 30 % 100
gain A; = A/4, while the second uses the adjustable gain, which iterations
depends on the signal value as it is given by equation (7).
10 . . ‘ .
IV. EXAMPLE RESULTS a2
§. 08 - r
The algorithm was proven to converge by using the same 3
example as in [6]. Figure 3 shows the results when the fixed gain 0.6 - -
approach was used. Figure 4 shows similar results for the adjustable A=1000 x=13V
gain approach when cquation (7) was used. In both cases the 0.4 - o
algorithm converges very well. The faster convergence is obviously
with adjustable gain. 02 - -
In addition to two-bit, four- and eight-bit analog to digital 0.0 '\ . v v ' y ' ,
converters were tested with single-layer recurrent Hopfield networks. 0 10 20 39 4 % e 70 & 9% I0
Fig. 5 shows the results for the 4-bit A/D converter, with x = 9.0, A iterations

= 100 and using both the fixed and the adjustable gain approaches,

One can see from this figure that the algorithm with adjustable gain Fig. 4. Output results for a 2-bit A/D converter with x = 1.3 converging to the
converges in approximately 20 iterations while algorithm with fixed binary state 0] using the modified relaxation technique with the adjustable
gain requires more than 100 iterations to reach a solution. The gain approach (Eq. (7): (a) A = 10.0; (b) A = 1000.

difference is even more significant in the case of the 8-bit AD

converter. Thus one can see that when using the formula (7) the

system converges more rapidly. S B
l.o b b " bbbt b bbb o i .‘ | |
u 8 A=1000 x =90V
2 o8- | e
& 0.6 - -
E]
Qo
0.6 - -
.“ - -
A=100 x=13V
04 - 02 | i
02 1 - Y S e A R ———
0 10 20 30 4 S50 6 70 80 9 100
00 ' " . ' ' ,
0 10 20 30 4 S0 60 70 8 % 100 iterations
iterations
10 , . , , ;
10 . , X X . . ; , . v
2 %i 0.8 - L
g o8 -3 A=1000 x=9.0V
H 0.6 ; i
™ A = 100.0]
=1000 x = 1.3V os | I
04 -
02 - -
02 -
00 - : " ’ , . -
0.0 reveieeee 0 10 20 30 4 S0 6 70 8 % 100
0 10 20 30 4 S0 60 70 8 S 100 iterations
iterati
ons Fig. 5. Output results for a 4-bit A/D converter with A = 100 and x = 9.0
Fig. 3. Output results for a 2-bit A/D converter with x = 1.3 converging to the converging to the binary sise J00! using the modified relaxation
binary state 0] using the modified relaxation technique with the fixed gain technique with: (a)fixed gain approsch and (b) the adjustable gain
approach: (a) A = 10.0; (b) A = 100.0. approach,

1083

V. CONCLUSION

It was demonstrated that through a slight modification of the
relaxation algorithm it is possible to insure convergence for any
neuron gain (A in the activation function). This enables one to
simulate recurrent Hopfield networks with both "soft” and "hard"
continuous activation functions. Furthermore the proposed algorithm
requires far less computation effort than applying the Newton-
Raphson to equation set (1) or any method of solving differential
cquations. It should be noted that algorithm is suitable for large
systems since the computational effort is proportional only to the
system size, in contrast to the commonly used Newton-Raphson
method where power relationships exist. Thus the use of the modified
relaxation method is applicablé to both small and large size networks
regardless of neuron gain.

REFERENCES

(1} J.J. Hopfield, "Neurons with graded response have collective
computational properties like those of two state neurons,” in
Proc. Nat. Acad. Sci., vol. 81, pp. 3088-3092, 1984

[2] JM. Zurada, "Gradient-type neural systems for computation
and decision-making," in Progress in Neural Newworks, Vol.
11, O. M. Omidvar, Ed. Norwood, NJ:Ablex, 1991

(31 D.W. Tank. and J.J. Hopfield, “Simple neural optimization
networks: An A/D converter, signal decision circuit and a
linear programming circuit, * JEEE Trans. Circuits Syst., vol.
CAS-33, pp. 533-541, May 1986

[41 A. Cichocki and R. Unbehauen, "Neural Networks for Solving
System of Lincar Equations and Related Problems” IEEE
Trans. on Circuits and Syst. I, CASI-39, pp. 124-138, 1992,

(51 MP. Kennedy and L. O. Chua, "Neural networks for
nonlinear programming,” IEEE Trans. Circuits Sys., vol CAS-
35, pp. 554-562, May 1988.

(6] J.M. Zurada and M.]. Kang, "Computational circuits using
neural optimization concepts,” Int. J. Electron., vol. 67, no. 3,
pp. 311-320

(71 JM. Zurada and W. Shen, "Sufficient Condition for
Convergence of a Relaxation Algorithm in Actual Single-
Layer Neural Networks" /EEE Trans. Neural Newworks, vol.
1, no. 1, pp. 300-303, Dec. 1992

(81 B. M. Wilamowski, D. J. Hamilton, Z. J. Staszak, A. J.
Majewski, “Analysis of digital integrated circuits using charge
conservation principle,” Electron Technology, vol 19, no. 172
Pp.59-73, 1986

[91 B.M. Wilamowski, Z. J. Staszak, D. J. Hamilton, "CHARCO
- IC transient analysis program,” IEEE International Circuit
and System Conference, San Jose, California, pp. 548-551,
May 5-7, 1986

1084

