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Abstract
An expanded contraction mapping theorem to single layer feedback neural networks of a gradient-type is
discussed. The derivation of a modified relaxation algorithm is presented followed by a brief demonstration example.

Introduction

There are currently many different types of recurrent neural networks in use; Hopfield, Bidirectional
Associative Memories and Multidirectional Associative Memories (BAM and MAM). These recurrent networks are
used to solve problems such as optimization {1], storing and retrieving patterns [2] or circuit generations (analog o
digital converters) [2]. In such cases a numerical simulation is always required before going to a hardware
implementation.

An exact transient solution requires the set of differential equations (1) to be solved in traditional ways. The
most commonly used solution is the forward or backward Euler formula. Such an approach typically requires a large
number of iteration steps with small time steps before a steady-state solution is reached. The Newton-Raphson
method can be used when a steady-state solution is required. This method is commonly used for electronic circuit
analysis. Although this method requires only a few iteration steps, it is computationally very intensive. Another
possible method is to use the relaxation method. It is much easier to implement, but it converges only for neurons
with small gains. The gain limitations become more severe for larger systems [3]. In many applications, high gain
neurons are required and thus this method can not be used.

In this paper the modified incremental relaxation method is presented. Similar to the relaxation method no
equations need to be solved. This method converges very well for all neuron gains, even for extremely large gains
as required for hard threshold discrete neurons.

Algorithm Principles.
The basic system diagram is shown in Fig. 1. A typical activation function v; = f(u) = [ 1 + exp(-Au) ]*

is used in this network. The input conductances and capacitances are equal to g; and C,, respectively. The network
transient response is described by the following set of differential equations [2][3]:

du. "
Ci— = Y w,v. - Gu, + i, = cur, @
dt P y o)
where
G, - gw‘.j + g, )
i

Each side of equation (1) is also equal to the unbalanced sum of the currents cur; flowing toward the node.
This also corresponds to the appropriate i-th component of the energy function gradient. When these unbalanced
currents cur; are equal to zero, the node capacitors are not charging and the system is in a steady-state condition.
Furthermore the system energy reaches a minimum when all components of the gradient vector are equal to zero.

The relaxation algorithm requires the iterative computation of successive output values using the formula:
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The convergence condition is satisfied when the sum of the closed loop gains through all possible paths is
smaller than one. This can be written as:

S @
dv,
This leads to the requirement given by [3]:
v 4| G )
n W‘.j

A different approach to obtaining a steady-state solution, is to use the forward Euler formula for solving
the differential equations as given in (1). This algorithm follows the physical phenomena of the circuit very strictly.
After each iteration step the unbalanced current of every node is computed using equation (1). This current is either
charging or discharging the corresponding capacitor depending upon it’s sign. Assuming a small time increment, the
corresponding voltage change on the input nodes can be found using:

At cur.
Au, - — ¢ (6)
Ci

The next logical step is to update the values of all the voltages using the relationships:

w™ = ut v Auf v, = f(u) (7

t

The above algorithm will converge if the time increment At is chosen small enough. The value of At can
be chosen to be equal to the time constant of the input node:

C.
At =1 = L (8)
G

i

Equation (3) of the relaxation method can easily be derived by combing (1)(6)(7) and (8). Thus the relaxation method
as described in [3] is a special case of the forward Euler formula for solving a set of differential equations with the
assumption that At is equal to the time constant given by (8). Therefore the algorithm given by (1)(6)(7) and (8) will
not converge for large values of A, just like the relaxation method. To assure convergence, At in equation (6) should
be reduced so that the voltage changes at each iteration step are small. By doing this the incremental gain of the
close loop of equation (4) is below 1.0 and thus stabilizes the algorithm.

Instead of using the algorithm described by equations (1)(6)(7) and (8) it is also possible to change the
relaxation formula (2) in the following way:
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where A, is the gain of the corresponding neuron and u™"4 is obtained from the relaxation formula (2). The
assumed activation function will always have a gain smaller than A/4. Therefore the modified relaxation algorithm

new old 1 computed old
: ", (u. mputed _ -

' ‘ ) (10)

will insure convergence. Instead of using the maximum gain of A; = A/4, it is possible to speedup the computation
process and still guarantee convergence by computing the gain of each neuron after every iteration step using:

o,
Am e h (1 = v,) (11)
u.

t
Example results

The algorithm was proven to converge by using the same example as in [3]. In addition to two-bit, four-
and eight-bit analog to digital converters were tested with single-layer recurrent Hopfield networks. The value of the
circuit components were obtained using the equations:

W, - 20 i = 28 - (12)

iy i

Fig. 2(a) shows the results for the 2-bit A/D converter, with x = 1.3 and A =0.3,1,3,10,30,100. This circuit
converges to a binary state of 01. The results for the same 2-bit A/D converter using equations (9) and (11) are
depicted in Fig. 2(b). Fig. 3 illustrates the convergence of an 8-bit A/D converter with an input vatue equal to 182.3.
This converter converges to the binary state of 11000000. Fig. 3(a) illustrates the results for a network with A = 100,
while Fig. 3(b) is for A = 10,000. Thus one can see that when using the modified formulas (9) and (11) system
converges more rapidly.

Conclusion

Through a slight modification of the relaxation algorithm it is possible to insure convergence for any neuron
gain () in the activation function). This enables one to simulate recurrent Hopfield networks with both "soft” and
"hard" continuous activation functions. Furthermore the proposed algorithm requires far less computation effort than
applying the Newton-Raphson to equation set (1) or any method of solving differential equations. Thus the use of
the modified relaxation method is now applicable to both small and large size networks regardless of neuron gain.
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Fig. 1. One layer Recurrent Neural Network with four neurons.
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Fig. 2. Output results for a 2-bit A/D converter with x = 1.3 and
A =0.3,1, 3, 10, 100 which converges to the binary state 0/; (a)
algorithm uses equation (10); (b) algorithm uses equations (9) and
(1

Fig. 3. Output results using the algorithm given by (9) and (11) for
an 8-bit A/D converter with x = 182.3 which converges to the

binary state 11000000; (a) A = 100; (b) A = 10,000.
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