Proceedings of the IASTED
International Conference

MODELLING
AND SIMULATION

Pittsburgh, PA, U.S.A.
May 10-12, 1993

Editor: M. H. Hamza

A Publication of
The International Association of Science
and Technology for Development - IASTED

ISBN: 0-88986-173-0
ISSN: 1021-8181

IASTED

ANAHEIM ¢CALGARY-ZURICH

R. S. Sandige, B. M. Wilamowski "Logic Hazard Free Synthesis Tool", proceedings of the IASTED Intermnational
Conference on Modeling and Simulation, Pittsburgh, Pennsylvania, pp. 171-174, May 10-12, 1993.

LOGIC HAZARD FREE SYNTHESIS TOOL

Richard Sandige

Bogdan Wilamowski

Department of Electrical Engineering
University of Wyoming
Laramie, WY 82071

KEY WORDS

Logic Hazard, Glitch,
Asynchronous, Synthesis Tool

ABSTRACT

This paper presents a new software tool for
the synthesis of logic hazard free circuits.
Spurious output signals, called glitches, in
combinational logic circuits are due to
different delays in signal paths and changes in
input signals. Such a condition, which can lead
to a glitch, is called a hazard. Logic hazards
are due to a single input change [1]. These
hazards can be eliminated by product terms
called logic hazard covers (LHCs).

The software synthesis tool presented in
this paper, when provided with a minimized soP
(sum of products) Boolean function, provides the
appropriate logic hazard covers for the
function. Elimination of logic hazards in
combinational logic functions results in logic
hazard free circuits. Logic hazard free
circuits are essential in the design of high
speed fundamental mode (level mode) asynchronous
logic circuits. The software synthesis tool
being presented provides a convenient technique
for identifying required logic hazard covers
({21, [3]) in such asynchronous designs.

INTRODUCTION

The realization of a logic hazard free
function results in the removal of spurious
outputs or glitches in the resulting circuit.
This synthesis tool allows up to fifty logical
variables to be used for a minimized SOP Boolean

function. Reapplying the synthesis tool with
all logic hazard covers included in the
function, verifies the removal of all logic
hazards. This tool provides designers with a

software method of generating logic hazard free
functions for very large as well as smaller
logic circuits.

GENERATION OF A LOGIC HAZARD
FREE FUNCTION VIA A KARNAUGH MAP

To illustrate the process of obtaining a

Plotting this specification on a four

variable Karnaugh map results in the plotted map
illustrated in Figure 1.

ABD ACD
AB\CD

FABCD = \of O "/‘<°
1

o] D|/T\0

——

e

011 0 [\1/|/1\ O

-t
-l

1M 0|0

o/o1

/ r_
B-C-D A-CeD

10 0

Figure 1.
Karnaugh map for Boolean specification

represented by Equation 1.

Equation 2 shows one of the two possible
minimized SOP equations for the given Boolean
specification.

F = A-B:D + A-C-D + B:C:D + A-C-D Eq 2

A static 1 logic hazard [4] can be detected
by observing cells in the map where only one
variable changes from 0 to 1 or from 1 to 0 as
in the case of cells 5 and 7. For example, the
function in the Karnaugh map is represented by
inputs ABCD and as these inputs change from 0101
to 0111 or from 0111 to 0101 (variable C changes
from 0 to 1 or from 1 to 0) a logic hazard
exists in the circuit, that is, output F can
change from 1 to 0 then back to 1. By covering
(linking) the ones in cells 5 and 7 to form the

redundant prime implicant or hazard cover A-B:D
and then logically adding this product term to
Equation 2, the static 1 1logic hazard that

logic hazard free function, consider the exists between cells 5 and 7 can be effectively
following Boolean specification represented by eliminated.
Equation 1.
F(A,B,C,D) = T m(0,1,2,5,7,10,14,15) Eq 1
205-149 171

Figure 2a shows Equation 2 in schematic
form usi the schematic capture software
package B Logic (5]. The simulation timing
diagram for the circuit is shown below the
schematic in Figure 2b.

EETEH e
Gate 1
Gate 2 3N
. 1JF
L:{; rasrons
Gate 5
Gate 3
PR -
Gate 4
(a)
A ol T ST
B ol L. L. I
C ; - - - ; .
D ;_{———*L___—__l'——_____
F oo U b U |
o 30 80 90 120 150 180 210 240
(b)
Figure 2.

(a) Schematic for Equation 2 using the
software package B® Logic. (b) Simulation
timing diagram showing logic 0 glitches.

By inspecting the timing diagram one can
see that a logic 0 glitch occurs when variable C
changes from O to 1 (the first glitch in the
timing diagram) if the propagation delay ot2 is
less than ot3. Changing the propagation delay
ot2 such that it is greater than ot3 causes a
logic 0 glitch to occur when variable C changes
from 1 to 0. The delays ot2 and ot3 represent
the propagation delays that exist from the input
signal line C (in this case) to the outputs of
gate 2 and gate 3 respectively.

Logic hazards also exist between cells 0O
and 1, cells 14 and 15, and cells 10 and 2 in
Figure 1. Logic hazard covers for these logic
hazards are product terms A-B:C, A-B-C, and
B-c-D respectively. Equation 3 shown below has
the same functionality as Equation 2, only the
logic hazard covers have been added to make

Equation 3 a logic hazard free (LHF) function.

Fryr = A+B-D + A:C:D + B:C*D + A:C'D

+ A-B:D + A-B+C + A:B:C + B-C'D Eq 3

>

The logic hazard covers in Equation 3
insure that the output Fpyp will stay at a value
of 1 when a single input variable changes from 0
to 1 or from 1 to 0 or stay at a value of 0 when
a single input variable changes from 0 to 1 or
from 1 to O ([4]), ([6]). Figure 3a shows the
circuit for the function Fryp in Equation 3.

Logic
Hazard

Covers
48100

" IF]
[cT0 TS Fyacssas
bl
(a)
Aol] L I R
B o LT S
c o] I
o L - [
F ot [
‘0 30 60 90 120 150 180 210 240
(b)
Figure 3.

(a) Schematic for Equation 3 using the
software package B Logic. (b) Simulation
timing diagram showing removal of all
glitches.

For the same propagation delays represented
in the timing diagram in Figure 2a, the
simulation timing diagram in Figure 3b shows
that the logic 0 glitch between cells 5 and 7
has been removed. Further testing also shows
that for function Fpyp all logic 0 and logic 1
glitches resulting from static 1 and static 0
logic hazards have been removed by the logic
hazard covers in Equation 3.

172

\ ol

GENERATION OF A LOGIC HAZARD FREE
FUNCTION VIA THE LOGIC HAZARD COVER ALGORITHM

For large or small functions, a systematic
way of generating logic hazard covers for
minimized SOP functions is represented by the
logic hazard cover algorithm illustrated in
Figure 4. The logic hazard cover algorithm
allows one to identify all logic hazard covers
without using a Karnaugh map. In general,
Karnaugh maps are useful for perhaps up to six
variables and then they become very time
consuming to draw as well as difficult to use.
The advantage of using the logic hazard cover
algorithm is the fact that it can be used for
any number of variables either by hand
calculation or by computer synthesis.

Step 1 Specifty a minimized Boolean
function in SOP form
i
Step 2 Compare two product terms

Step 3 Record all variables except
the mutually exclusive
variable as a logic hazard

cover
B

All
product terms

have been
compared

Step 4 Remove redundancles in the
set of logic hazard covers

Figure 4.
Logic Hazard Cover Algorithm

Figure 5a shows the hand calculation
technique for computing the logic hazard covers
for function F (Equation 2) while Figures S5b&c
show the results of using the logic hazard
synthesis tool (computer synthesis) to calculate
the logic hazard covers for function F. The
logic hazard synthesis tool is much faster and
easily confirms both the hand calculations and
syntheses using Karnaugh maps. To provide
additional conformation, the logic hazard
synthesis tool can be rerun with logic hazard
covers appended to the minimum SOP part of the
function. The logic hazard synthesis tool will
indicate any 1logic hazard covers that are
missing.

F = AsBsD + A+CeD + BeCsD + AsCeD
L

LHC = A«B.C
[i |
none

LHC = B+C*D
I
LHC = A+B:D
i |
none
I
LHC = A«B:C

(a)

/A/B/D
JA/CD
BCD
ac/D

(b)

* input data:

/A/B/D

JA/CD

BCD

AC/D

* logic hazard covers:
/A/B/C

/BC/D

/ABD

ABC

(c)

Figure 5.

(a) Hand calculation technique for
computing logic hazard covers for function
F (Equation 2). (b) File generated using
a text editor with the extension .LIN
(Logic INput) for function F. (c) Result
of using the logic hazard synthesis tool
to calculate the logic hazard covers for
function F.

173

CONCLUSIONS

A special software synthesis tool has been
written and simulations have been run using
B“Logic to verify the removal of logic hazards
using logic hazard covers. The software
synthesis tool verifies that logic hazards exist
in hazardous circuits (circuits incorporating
logic hazardous equations) by the generation of
logic hazard covers. The synthesis tool may
then be rerun using the logic hazard covers to
verify that logic hazards do not exist in the
final function with the logic hazard covers
logically added to the function. A schematic
capture tool that incorporates a timing
simulator can also be used to verify that all
the hazards have been removed from the logic
hazard free function. The software logic hazard
free synthesis tool presented in this paper (for
PC and PC compatibles) is available from the
authors at no charge.

REFERENCES

{1] R. S. Sandige, Modern Digital Design,
McGraw-Hill, New York, 1990.

(2] R. F. Tinder, Digital Engineering Design A
Modern Approach, Prentice Hall, New Jersey,
1991.

[3] C. Innes, "Avoiding Programmable Logic
Hazards", National Anthem, National
Semiconductor, January/February 1988, p. 5.

[4]) S. H. Unger, The Essence of Logic Circuits,
Prentice Hall, New Jersey, 1989.

(5] J. A. Engelbert, User Manual for B2 Logic
v2.2, Beige Bag (B“) Software of Ann Arbor,
Michigan, 1990.

[6) E. J. McCluskey, Logic Design Principles
with Emphasis of Testable Semicustom Circuits,
Prentice Hall, New Jersey, 1986.

174

