B. M. Wilamowski, J. J. Cupal, R. S. Sandige, "A Fractional Powers-of-Two Number System for Digital Neural
Networks”, proceedings of the IASTED Intemational Conference on Modeling and Simulation, Pittsburgh,

Pennsylvania, pp. 620-622, May 10-12, 1993.

A Fractional Powers-of-Two Number System
for Digital Neural Networks

Bogdan M. Wilamowski, Jerry J. Cupal, and Richard S. Sandige
University of Wyoming
Department of Electrical Engineering
Laramie, WY 82071

Abstract

A new arithmetic number system based on fractional
powers of two is proposed. In this system, the weight of each
bit position is a power of 2™, where n=234 ei.
Multiplication or division by 2" can be accomplished by
simple shifts of the input data. Although not as simple as in
conventional twos complement binary, addition and
substraction can be accomplished using simple ALU
structures. Details of how this is accomplished are given, as
well as an implementation of a hardware structure to
perform mudtiply-accumulate operations commonly found in
neural nets and FIR filters.

Key words: Neural Networks, Hardware, Arithmetics

Introduction

Many recent achievements have been recorded in the
relatively new area of research in neural networks. New
leaming algorithms, new system structures and many useful
applications have been found. Neural network hardware
implementations are also of current focus, but this area of
research is not as advanced. This is obvious that better
hardware implementation could enhance neural network
development. A neuron must perform a series of multiply-
accumulate operations. This can be done in analog hardware
or in digital computer systems. For many applications, the
input signals are in digital format and the analog technique
of implementing a neural network is prohibitive. Therefore,
an all-digital approach must be taken [1}{2]{3]). Because of
the need to perform the multiply operation, neural networks
implemented in a digital computer operate relatively slowly.
The signal at each neural connection has to be multiplied by
an appropriate weight. One way to overcame this problem is
to use logarithmic arithmetic [4](5]. In this case
multiplications are fast (amounting to simple addition) but
the addition and subtraction process creates a problem.
Another approach is to use the shift operation instead of
multiplication [6). In the case of binary systems, such
multiplication is coarse. Multiplicands with a value of
powers of two are only possible; i.e. 2,4, 8,16 ... or 0.5,
0.25, 0.125 ... The purpose of this paper is to introduce a
new number system to perform the arithmetic operations
required in sum-of-products algorithms. This system seems

205-166

ideally suited for applications where fast, but not necessarily
accurate, multiplications are required, as is the case for a
neuron in a neural network. Instead of binary numbers in
base 2 numbers in base 2'® are introduced. Using this
approach fast multiplications and division are possible by
simple shifting of the input data.

Concept of the arithmetic

Consider a neuron that performs arithmetic using a
different number system. This number system is to be based
upon weights of 2'* (where n = 2,3.4, etc.) instead of 2"
The use of such a number system has lead to the design of
simple neurons with interesting features. For example, if
n=2, this new number system is based upon powers of V2.
That is, the least significant bit has a value of 1, the second
v2, etc. In this case, the representation for the number
7.4142,, = V2 + 6 or 0110 , + 0001y,is as shown in Figure
1.

gv2 | 8 |av2l & |2va| 2 [v 1 valye
o{ojo 1 (] 1 1 o | T V2+6=7.4142

Figure 1. The representation of 74142, = V2 + 6 in base V2 number system.

In this numbering system, multiplication or division by
powers of V2 corresponds to the shift left or shift right
operation by one position as shown in Figure 2.
Multiplication by (¥2)* = 2V2=2.8284 of the number 7.4142
corresponds to the shift left by three places.

sv2 | 8 |av2| 4 t2v2} 2 N2 1 value
olo | 1t]o] 1 o] olT 6¥2+2=10.4853
olo|lofjo] 1ol 1 IN241=5.2426

Figure 2. Multiplication and division by V2 as donc with shifts in base N2 number system.
The original value of the number was 7.4142,, = N2 + 6, as in Figure 1.

Addition (and substraction) of two numbers in base V2
is similar to binary addition (and substraction), with the
difference that the carry coming out of the addition of any
two bits is added in two bit positions to the left as shown in
Figure 3. If the base is 2'™, the carry is shifted by n.

620

o RGOLY

82 8 214 | v2) 2 V2 | value
0 1 i 0 1 0 1 1 IN2+9
B 0 0 0 0 0 1 1 1 V243
carry 1 |] 1 1
A+B 1 1 0) 0 0 0 0 8V2+12

Figure 3. Addition of two numbers in base V2 number sysiem

Because of this somewhat unique addition feature, it
is possible to separate a number in the V2 number system
into two halves, one representing the square root terms and
the other representing the integer terms. Addition (or
substraction) can be done on each half in parallel, making
this a faster process than adding the whole value, as in
conventual binary adders. Figure 4 shows an example of the
addition operation.

A B A+B
0] 1 1 . 0 0 0 t ! 0 0 0
1 0 0 1 0 0 1 1 1 1 0 0
N2+ 9= 188995 3+vV2=44142 8V2 + 12 = 233137

Figure 4. Addition of two numbers in base V2 number system. The top row represents the
fractional terms. the bottom the integer terms. Addition is accomplished by adding the
separnaie representations.

In the of example of Figure 5 showing the subtraction
of 00000111 (4.4242) from 01101011 (18.8995), each 8 bit
number can be split into two 4 bit components. Substraction
is accomplished by taking the twos complement of both
components of the subtrahend and adding these to the
corresponding components of the minuend. Note that the
number 00000111 has two components: 0001 and 0011 with
the respective two’s complements 1111 and 1101. Therefore
the two's complement in base V2 arithmetic is 11111011,
which is differ from the two’s complement in binary logic
(11111001).

A B A+B

of [+ 1] |1 o] [o] fof |0] |_

[Tof Jol T of Tol i{ [

corresponds 0

0 1] I 1 1 1 1 0 1 i 0

tf fol ol {tf*] [t1] fa] ol [v}F] Jof {1 1] o

N2 + 9 = 18.8995 -N2-3=-44142 6V2 + 6 = 14.4853
Figure S. Subtracton of two numbers in base V2 ber sysiem

Because multiplication or division is done by shifts,
the weights of a neuron could be stored as some number that
represents the number of left or right shifts. This would
reduce the memory requirements to store the weights of any
given structure. This, plus the fact that fast multiplication
can be performed by simple shifts of the input values, make
this new arithmetic an interesting technique for applications
in neural networks. The examples show arithmetics based
upon 2'® with n = 2. By using larger values of n, the
"coarseness” of the weights can be reduced from the
examples given.

621

Implementation of the arithmetic

With the proposed arithmetic, multiplication or
division by a constant can be replaced with shift left or shift
right operations. Likewise, when arithmetics base V2 are
used, addition and subtraction operations can be performed
in a similar way as in binary arithmetic. The only difference
is the necessity of independent operations on two
components of half length. These computations are best
performed in parallel using two separate ALU units. Thus
arithmetics in base 2'* require n parallel ALU units.

There are several hardware configurations that could
implement the 2'* arithmetic discussed above. It is obvious
that one shift register and at least two simple ALUs that
perform addition or substraction (using twos complement)
are required for the V2 arithmetic shown in the examples.
One such hardware model is shown in figure 6. It is intended
to perform a multiply-accumulate operation such as would be
required in a neural net or a FIR filter. The input values are
twos complement binary numbers, in this case 16 bits wide.
The weights can be represented in a 6 bit number, in a form
of sign-magnitude format. Actually, one bit is for the sign,
another for the shift direction (multiplication or division),
and 4 bits for the shift count.

The input value is loaded into a 16 bit barrel shifter
with the shift direction controlled by the weight’s direction
bit and the shift amount controlled by the most significant 3
bits of the shift count. Shifting is done as in normal twos
complement data shifts-- left shifts fill with zeros and right
shifts fill by sign extension. The result of this shifting
process multiplies the input value by the unsigned fixed
weight.

The output of the shift register is feed into one of two
addfaccumulate structures by the action of two 16 bit
multiplexers controlled by the least significant bit of the shift
count. If this bit is a one, indicating multiplication/division
by V2, then the value is added to the accumulator holding
the V2 terms (represented as result_sq_rt in Figure 6). If this
bit is a zero, indicating multiplication/division by integer
values, then the value is added to the result_int accumulator.
Actually, the ALUs in the figure perform either addition or
twos complement substraction, as controlled by the sign of
the weight.

The hardware controller continues the multiply-
accumulate operations until all the input values are
processed. At the conclusion, the result accumulators hold
the V2 and integer sums. Since it is desirable to have
standard binary outputs, it is necessary to multiply the value
in the result_sq_rt accumulator by V2 and add these to the
integer accurnulator. This is done by passing the value in the
result_sq_nt accumulator back through the multiply-
accumulate structure with appropriate weights to approximate
multiplication by V2 (V2 = 1 + 1/4 +1/8 + 1/32).

Input values Input weights
} 16 :lrw {»e
i s 0
S e 7 o] oo
Fie -
Shift regleter oI (:)u
Countl!
?IG T16 T1e ?lo
N\ Muliplexer ,LI\ Muliplexer (0
16 T e {1
G |\ o
}1e Fie
[emamr] | []
+ 16 4 16
L

Figure 6. A hardware model of an arithmetic logic circuit 10 perform multply-accumulate
algonithms in the V2 number sysiem.

The hardware structure shown in Figure 6 has been
implemeated in Verilog HDL. A 20 tap FIR filter structure
was demonstrated using all fractional coefficients. That is,
the coefficients were not formed into integers as is often the
case when using integer multiplications within a
microprocessor. Since the coefficients are always fractional,
the direction bit in each weight is not required. There was an
average error of about 10% in the actual value of the
coefficient compared to the desired. This is approximately
half that of a filter based upon shifted binary weights (ref 6).
Further reduction in the coefficient error could be obtained
with structures based upon 2'*, but these would require
additional multiplexer/ALU/accumulator structures.

Parallel processing which is natural for addition or
subtraction operations also can be extended for an entire
layer. The nature of a neural network is such that all signals
in one neural layer can be processed at the same time, thus
allowing for parallel computation of all neurons within a
layer.

Conclusion

The proposed arithmetic has several advantages: (1)
Multiple ALU units provide parallel processing, resulting in
fast operation. (2) Since multiplication is done by data
shifting, a serial communication technique may be used
between neurons to further enhance multiplication speed and
reduce number of required interconnections. (3) For most
practical neuron applications, only four to six bits of memory
are required to store each weight value.

The disadvantages of the proposed arithmetics are thay
in most cases longer registers would be required since
numbers in base 2'" are longer. Through the introduction
base 2'™ arithmetic the coarsity of weights can be
significantly reduced in comparison to normal base 2
arithmetic in which multiplication by the power 2 is
substituted by shift operations.

Reference

1 A. F. Murray, A. W. Smith, "Asynchronous VLSI
Neural Networks Using Pulse-Stream Arithmetic”,
IEEE Journal of Solid-State Circuits, Vol. 23, No. 3,
June 1988, pp. 688-697.

2. M. Mumford, D. Andes, L. Kern, “The Mod 2
Meurocompuwter System Design,” IEEE Trans. on
Neural Networks, Vol. 3, No. 3, May 1992, pp. 423-
430. '

3. G.Pechanek, S. Vassiliadis, J. Delgago-Frias, "Digital
Neural Emulators Using Tree Accumulation and
Communication Structures,”" IEEE Trans. on Neural
Neitworks, Vol. 3, No. 6, November 1992, pp. 934-940

4. M. Arnold, T. Bailey, J. Cowles, J. Cupal,
“Implementing Back Propagation Neural! Nets with
Logarithmic Arithmetic”, Proceedings Intern. AMSE
Conference on Neural Networks, San Diego, May 29-
31,1991, Vol. 1, pp. 75-86

5. M.Arnold, T. Bailey, J. Cowles, J. Cupal, "Redundant
Logarithmic Arithmetic”, IEEE Trans. on Computers,
Vol. 39, No. 8. August 1990, pp. 1077-1086.

6. M. Marchesi, G. Orlandi, F. Piazza, A. Uncini, "Fast
Neural Networks Withous Multipliers”. IEEE Trans. on
Neural Networks, Vol. 4, No. 1, January 1993, pp. 53-
62

622

