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ABSTRACT:

The training of multilayer neural networks using the standard back-
propagation algorithm suffers from slow asymptotic convergence. In this
paper, a method of modifying the back-propagation algorithm to improve
convergence is proposed using a new technique for gradient computation.
Two cases were examined using this modification, an "EXCLUSIVE OR"
network and a four input, four hidden layer, three output network. The
simulations using the standard method and the modified method were
compared. The results showed significant improvement in convergence
using the proposed modification.

INTRODUCTION

The back-propagation algorithm is known for its slow convergence ratio. To gain
faster convergence and improve the learning procedure, several different approaches
were investigated. Instead of using standard back propagation, which is based on
gradient descent minimization of the total error function, more advanced
optimization techniques were used. These techniques include the quasi-Newton
optimization algorithm (Bello, 1992), algorithms using information about the second
derivative of the total error (Stefanos and Anastassiou, 1988) and advanced filtering
techniques (Singhal and Wu, 1989). Learning methods based on the optimization
of network architecture during learning process were also researched. In some
cases, nonrelevant weights or units are subsequently removed (Mozer and
Smolensky, 1989; Karnin, 1990). In other cases, the training procedure starts with
a simple network and additional connections and nodes are incorporated to improve
classification by an iteration process (Barmann and Biegler-Konig, 1992).
Advanced perceptron-based learning rules were examined to aid in the improvement
of the learning procedure (Gallant, 1990). Another approach is to modify the back
propagation algorithm by minimizing a different error function instead of the
standard quadratic error function (Van Ooten and Nienhuis, 1992; Krogh,
Thorbergsson and Hertz, 1989). Also considered was the method of dynamic
adaptation of learning parameters (Eaton and Olivier, 1992; Miniani and Williams,
1990) including the variation of individual neuron gains as a learning procedure
(Sperduti and Starita, 1993).

Convergence of back-propagation is usually very slow when the network has
a high neuron gain, or when the neuron states are very well defined and the net
values are far from threshold values. In these cases, the gradients computed for the
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back propagation algorithm are very small and errors have a limited ability to
propagate through the network. Under such conditions, "flat-spots” are encountered
and the output can be maximally wrong without producing a large error signal. As
a consequence, the learning process and weight adjustment can be very slow. This
is a major limitation of the back-propagation algorithm. Other methods were
investigated to eliminate these "flat spots”. The activation function was modified
by adding an offset, which resulted in a significant increase in the speed of
convergence (Van Ooten and Nienhuis, 1992). The speed of convergence was also
accelerated when the inverse sigmoid function was used or a scaled linear
approximation of the sigmoid function for error calculation was used (Parekh,
Balakrishnan and Honavar, 1992) during learning procedure.

In this paper, a new technique was developed for improving the convergence
of the learning process by using a new method of calculating the "gradient” of the
activation function. The method used to calculate the gradient depends on the error
at the neuron output. If the error is large, the effective gradient is also large, and
when the error is small, the effective gradient corresponds to the gradient calculated
using the traditional method.

THEORY OF MODIFICATION

The back-propagation algorithm commonly employed for training of multilayer
neural networks suffers from a slow asymptotic convergence rate.  For the
sigmoidal bipolar activation function:
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the gradient (slope) is computed as a derivative of (1):
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Figure 1: Standard sigmoidal activation function for bipolar neurons and its derivative.
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Figure 2: (a) Global error as a function of iterations for the "Exclusive Or" neural network using the
standard back-propagation algorithm for ten randomly chosen initial weights with learning constant ) = 0.2
and neuron gain A = 1.0. (b) "Exclusive Or” network using the standard back-propagation algorithm with the
same starting weights, but with A = 10.

The activation function and it’s gradient are illustrated in Figure 1. Typical
cases for convergence using the "EXCLUSIVE OR" neural network with randomly
chosen initial weights are shown in Figure 2a. For most cases, convergence was
reached in less than 500 iterations. The neural network was then trained into
saturation and the desired output were changed to their opposite values. Using these
unfavorable weights as initial conditions, it is very difficult to recover the proper
state during the learning procedure as shown in Figure 3a. In most cases, the
standard back-propagation algorithm did not converge at all. Another example of
poor convergence is shown in Figure 2b where the same set of initial weights were
used as in Figure 2a, but the neuron gain was changed to A = 10.

In the back-propagation algorithm, the weight changes are proportional to the
error propagating from the output through the slopes of activation function and
through the weights. This is a consequence of using the steepest gradient method
for calculating the weight adjustments. Convergence of the learning process can be
improved by changing how the error propagates back through the network.
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Figure 3: (a) Global error as a function of iterations for the "Exclusive Or" neural network using the
standard back-propagation algorithm with unfavorable starting weights, n = 0.2 and A = 1.0. (b) "Exclusive
Or" network using the modified back-propagation algorithm with the same unfavorable starting weights.
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Figure 4: lllustration of the modified derivative computation using the slope of the line con necting the points
of actual output and desired output.

It is proposed in this paper that for the purpose of error propagation, the
slope (gradient) of the activation function is calculated as the slope of the line
connecting the output value with the desired value, rather than the derivative of the
activation function at the output value. This is illustrated in Figure 4.

Note that if the output value is close to the desired value, the calculated
slope corresponds to the derivative of the activation function, and the algorithm is
identical to the standard back-propagation formula. Therefore, the "derivative" is
calculated differently only for large errors, when the classical approach significantly
limits error propagation.

In a second example, a four input, four hidden layer and three output neuron
was used. All possible 16 binary combinations of input patterns were classified into
five randomly chosen categories as shown in Table 1. This network was trained
with unfavorable initial weights using both the standard back-propagation and the
modified back-propagation method.

INPUT OUTPUT CATEGORY

-1
1 -1 11 v
1

-1 1-1 v

Table 1: Training set for four input, four hidden neurons and three output neurons.
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Figure 5: (a) Global error as a function of iterations for a four input, four hidden layer and three output
network using the standard back-propagation algorithm and unfavorable starting weights, 1 = 0.2 and A =
1.0. (b) Four input, four hidden layer and three output network using the modified back-propagation
algorithm with the same unfavorable starting weights.

Figures 5a and 5b show results for both methods. Significant improvement was
made when the modified method of gradient computation was used. Figures 6a and
6b illustrate results for the same network, but with A = 5.

Similar results were obtained with various neural network structures such as
binary number classifiers, parity bit finders and others. In most cases, significant
improvement of convergence was noted, especially in networks with large neural
gains and with unfavorable chosen starting weights.

CONCLUSION

Experiments using the three layer feedforward network (one hidden layer) have
shown that substantial improvements can be obtained if the slopes in the last layer
are computed using the modified algorithm. Improvement was especially significant
when the output neurons were initially set to maximally wrong states (the system
was initially trained for maximally wrong values). It is illustrated that the standard
back-propagation algorithm does not converge at all while the modified back-
propagation algorithm does converge and gives good results. Also, for efficient
classification of patterns, the neural networks with high gain values (A) have to be
used. In such practical cases, the standard back-propagation algorithm has difficulty
converging.
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Figure 6: (a) Global error as a function of iterations for a four input, four hidden layer and three output
network using the standard back-propagation algorithm with the same unfavorable starting weights as in
Figure 5, but with A = 5.0. (b) Four input, four hidden layer and three output network using the modified
back-propagation algorithm with unfavorable starting weights and i = 5.0.
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It was also observed that in cases with small gains A = 1, modification of
the gradient computation did not improve the convergence. This is due to the fact
that in cases where the output values are far from saturation, the slope computed
using the modified method (Figure 4) is smaller than the slope computed as a
simple derivative which causes the error to propagate slowly. This corresponds to
the lowering of the effective learning constant.
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