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ABSTRACT:

An expanded contraction mapping theorem to single layer feedback neural
networks of a gradient-type is discussed. The derivation of a modified
relaxation algorithm is presented. The algorithm converges well for
continuous recurrent neural networks with low and high neurons gains. Two
different implementations of the proposed algorithm are experimentally
compared.

INTRODUCTION

Recurrent neural networks such as Hopfield networks are used for solving many
practical problems including optimization (Zurada,1991), storing and retrieving
patterns (Tank and Hopfield,1986), solving linear equations systems (Chichocki and
Unbehauen,1992), linear and nonlinear programming (Kennedy and Chua,1988) and
other related problems as listed in (Zurada and Kang,1991). In all cases a numerical
simulation is always required even if hardware implementations are desired.

An exact transient solution requires the set of differential equations (1) to be
solved. The most commonly used solution is the forward or backward Euler
formula. Such an approach typically requires a large number of iteration steps with
small time steps before a steady-state solution is reached. An alternate procedure,
the Newton-Raphson method, can only be used when a steady-state solution is
required. This method is commonly used for electronic circuit analysis. Although
this technique requires only a few iteration steps, it is computationally very
intensive. Another possible approach is to use the relaxation method. It is much
easier to implement, but converges only for networks with small neuron gains. The
gain limitations become more severe for larger systems (Zurada and Shen,1992). In
many applications, high gain neurons are required and thus this method can not be
used. In this discussion the modified incremental relaxation method is presented.
Similar to the relaxation method no equations need to be solved. This method
converges very well for all neuron gains, even for extremely large gains as required
for hard threshold discrete neurons.

ALGORITHM PRINCIPLES
The basic system diagram is shown in Fig. 1. A typical activation function v, = f(u;)

= [ 1 + exp(-Au) J* is used in this network. The input conductances and
capacitances are equal to g; and C, respectively. The network transient response is
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Figure 1: Single-layer recurrent neural network with four neurons.

described by the following set of differential equations (Zurada,1991)(Tank and
Hopfield,1986):
c du, " G . . G = )
== = LWy - G w by =cur, v, Gi= Xw v g

fdt j=0 j=1

Each side of equation (1) is also equal to the unbalanced sum of the currents
cur; flowing toward the node. This also corresponds to the appropriate i-th
component of the energy function gradient. Furthermore the system energy reaches
a minimum when all components of the gradient vector are equal to zero.

The relaxation algorithm requires the iterative computation of successive
output values using the formula:

uf - _(17 i(wijv/‘ + i‘.) o vl - f(uf”) )

i J0

The relaxation method does not converge for networks with high neuron
gains as required for many practical networks. An alternate approach for obtaining
transient solutions is based on the charge conservation principle [8]. This simple
algorithm follows the physical phenomena in the circuit and it is very efficient for
transient analysis of VLSI digital sub-circuits. For medium size circuits (20
transistors) it is about 100 times faster than the standard SPICE algorithm
(Wilamowski, Staszak, Hamilton,1986). After each iteration step the unbalanced
current of every node is computed using equation (1). This current is either charging
or discharging the corresponding capacitor depending upon it’s sign. Assuming a
small time increment, the corresponding voltage change on the input nodes can be
found using:
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The above algorithm will converge if the time increment At is chosen small
enough. It can be proved that if the value of At is equal to the time constant of the
input node then the computation process is equivalent to the relaxation method.
Thus the relaxation method as described in (Zurada and Shen,1992) is a special case
of the method based on the charge conservation principle. Therefore the algorithm
with At=1T will not converge for large values of neuron gain A, just like the
relaxation method. To assure convergence, At in equation (3) should be reduced so
that the voltage changes at each iteration step are small. A further simplification of
the algorithm is possible since solely steady state solutions are required for recurrent
neural networks. One can prove that the relaxation formula (2) can also be useful,
if the results obtained in equation (2) are modified in the following
way(Wilamowski, Staszak, Hamilton,1986):

uinew _ uiold . . i 1 ( uirelax B uiou) @)

where A, is the gain of the corresponding neuron and u/** is obtained from the
relaxation formula (2). The activation function A; will always have a gain smaller
than A/4. Instead of using the maximum gain of A; = A/4, it is possible to speedup
the computation process and still guarantee convergence by computing the gain of
each neuron at every iteration step using:

ov.
A= -— - A vl - v %)
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Figure 2: Output results for a 2-bit A/D converter with x = 1.3 and A = 0.3, 1, 3, 10, 100 which converges to
the binary state 07; (a) algorithm uses A=A/4; (b) algorithm uses equation (5).
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EXAMPLE RESULTS

The algorithm was proven to converge by using the same example as in (Zurada and
Shen, 1992) in addition to many other experiments. As an example two-bit, four-
and eight-bit analog to digital converters were tested with single-layer recurrent
Hopfield networks. Fig. 2(a) shows the results for the 2-bit A/D converter, with x
= 1.3, A = 0.3,1,3,10,30,100 and A; = A/4. This circuit converges to a binary state
of 01. The results for the same 2-bit A/D converter using equation (5) are depicted
in Fig. 2(b). Thus one can see that when using the formula (5), the system
converges more rapidly. Figure 3 presents results for four bit AD converter
converging to the input value of x = 7.0 using recurrent neural networks with (a)
A = 10 and (b) A = 1000. Note that network converges very rapidly for very large
neuron gains.

Fig. 4 illustrates the convergence of an 8-bit A/D converter with an input
value x = 182.3. This recurrent network converges to the binary state of 11000000.
Fig. 4(a) illustrates the results for a network with A = 100, while Fig. 4(b) is for A

= 10,000.
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Figure 3: Output results using the algorithm with equation (5) for an 4-bit A/D converter with x = 7.0 which
converges to the binary state 0777; (a) A = 10; (b) A = 1000,
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Figure 4: Output results using the algorithm with equation (5) for an 8-bit A/D converter with x = 182.3 which
converges to the binary state 17000000; (a) A = 100; (b) A = 10,000.
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CONCLUSION

It was demonstrated that through a slight modification of the relaxation algorithm
it is possible to insure convergence for any neuron gain (A in the activation
function). This was proven by the same example as in (Zurada and Shen, 1992) but
also by many other examples. This enables one to simulate recurrent Hopfield
networks with both "soft" and "hard" continuous activation functions. Furthermore
the proposed algorithm requires far less computation effort than applying the
Newton-Raphson to equation set (1), or any other method of solving differential
equations. It should be noted that algorithm is suitable for large systems, since the
computational effort is proportional only to the system size in comparison to the
commonly used Newton-Raphson method where power relationship exist. Thus the
use of the modified relaxation method is applicable to both small and large size
networks regardless of neuron gain.
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