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ABSTRACT

It is common practice for the power system dispatcher
before taking any action to precede it with power flow
analysis so as to avoid costly experimentation with the real
system. Hence speed of power flow solutions is an extremely
important factor for real-time implementation of corrective
actions. The advantage of fast computation of Artificial
Neural Network (ANN) is used for obtaining power flow
solutions in real time. The input to the ANN are the real and
reactive power generations and demands in the system, and
the output data are the complex bus voltages. A few
configurations of the neural network are experimented and
the best results are achieved with a single-layer feedforward
neural network with nonlinear feedback. Using the trained
neural network, an approximate solution of power flow can
be obtained almost immediately. It is found that the accuracy
of solutions is increased by one or two orders of magnitude,
when feedback is incorporated in the neural network.

INTRODUCTION

Undoubtedly, the importance of power flow analysis in
modern-day power system operation and planning is one of
monumental proportions. It provides snapshots in time of
the system behavior under both normal and abnormal
conditions. Operators depend on it i) for performing security
assessment under normal system operation and ii) for
applying appropriate corrective strategies under emergency
conditions.

A typical power system is modeled by a large set of
non-linear equations which are normally solved by using
any of the widely acclaimed power flow solution techniques
viz., the Gauss-Seidel method, the Newton-Raphson method
or the fast-decoupled method. Of these three, the fast-
decoupled method provides the fastest solutions. However,
all of these methods require significant computational effort
and are therefore difficult to use in real time applications.
This paper presents arguments that the conventional tedious
approach to obtaining solutions of power flow by using
numerical methods can be avoided by using simulated neural
computing.

In the recent past several attempts have been made to
investigate the suitability of artificial neural networks in
power system applications [1-3]. All of the authors have
reported relative success with their formulations. This paper
presents a number of different configurations of the neural
network and identifies a particular case which is most
suitable for power flow analysis in real-time applications.

THE ONE LAYER NEURAL NETWORK

A one layer neural network is characterized by a layer of
input neurons and a layer of output neurons interconnected to
one another by weights to be determined by the training
process. This process is illustrated in Fig. 1. It should be
mentioned here that the weights applied to the inter-
connections of the neurons make significant differences in
the accuracy of the predictions of the output desired. For
large networks, the number of weights can become very
large. We are working on an approach whereby we can
eliminate some of the weights from consideration and still
arrive at accurate results. This feature will be enumerated in a
later paper.

Fig.1. One layer neural network

For application to power flow, the power system is
linearized and then modeled by one layer of the forward
neural network as shown in Fig. 2. The input data are the real
and reactive power generations and demands in the system,
and the output data are the complex bus voltages.

Single layer neural network represents a linear system
and it is obvious that results obtained for a nonlinear system
such as a power system can not be accurate. One possible
solution is to introduce additional input layers to generate
second and higher order nonlinear terms. This approach
however will result in significant increase of the size of a
neural network and it will be inpractical for large power
systems to be analyzed.
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Fig. 2. Linear Neural Network for Power Flow
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A possible approach to increase accuracy is to use a
feedback loop as shown in Fig. 3. Line power vector van be
directly computed from bus voltages and line impedances.
Using simple summation with complex arithmetic the input
vector INF (bus powers) can be obtained from line powers
summation. At initial state, the vector of line powers SL is
zero and there is no feedback - INF is zero. Therefore in the
first step the input vector IN is applied to the neural network
and an approximate initial vector of bus voltages VB is
obtained. In the second step the difference between input
vector IN and feedback vector INF is computed from line
powers SL and bus voltages VB. Therefore the neural
network operates on the difference (error) and the vector of
line powers is corrected.

Computation
of
Input Vector

BUS VOLTAGES
VECTOR

LINE POWERS
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Fig. 3. Neural Network With feedback for Power
Flow Analysis

By adding the non-linear feedback, we can obtain
significant improvement over the case with no feedback.
Usuaily a few iterations are enough to obtain convergence as
shown in the results section. The results are very much
comparable with those from a rigorous mathematical
analysis, but the computational effort is negligibly smaller
in comparison.

Training of the Neural Network

For a given power system such a network can be trained
using, for example the back propagation algorithm which is
very slow and requires hundreds or thousands of iterations
depending on the size of the system. However in this case,
the projection algorithm based on the least squares
approximation technique is found to be more efficient. Since
an artificial neural network without hidden layers is used, the
proiection training algorithm is very stable and efficient.
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For supervised training the exact solutions obtained
from a conventional power flow program is used. The
training procedure was verified on a modified six bus system
[4] and the IEEE-24 bus test system[5]. Relevant data for the
two systems pertinent to power flow are shown in the
appendix. Training sets of 24 input and 24 output vectors
were used for the 6-bus power system and 96 input and 96
output vectors were used for the 24-bus system. The input
training data for the 6-bus system consists of the eight
elements: real bus powers (real power generations minus the
real power demands) at all buses except the slack bus and
reactive power demands at all load buses. - The 24 output
vectors consist of the eight elements: bus voltage angles at
all buses except the slack bus and voltage magnitudes at all
load buses. These correspond to:

Input:  {Py, P3, P4, Ps, P, Qp4. Qps. Qps}

Output: {85, 83, 84, 85, 86, V4, IV5), IV6l}

After training is completed, the ANN is tested for validation.
A set of new input test pattern is applied to the neural
network. Table 1 shows the weights assigned for the
interconnections between the inputs and the outputs. Table 2
shows the input test pattern to the ANN and Table 3 shows
the corresponding output from the ANN. Comparisons of
the performance of the ANN relative to a fast-decoupled
solution for the 6-bus system can be made by inspection of
Table 4.

Table 1. Weights used for the 6-Bus System

4.8867 4.8823 3.1830 3.2727 4.3089 -0.1235 -0.1132 -0.1162
4.6942 10.1787 3.0244 5.0325 7.4330 -0.1525 ~0.1354 -0.1392
2.8420 3.3386 5.1587 2.4526 2.7060 -0.1232 -0.1238 -0.1315
4.0310 5.4700 2.8121 6.6296 4.8254 -0.1778 -0.1322 ~0.1459
4.4969 7.7150 3.0953 4.8059 9.0533 ~0.1427 -0.1179  -0.1095
3.622) 1.4848 0.4292 1.7440 2.0758 0.0797 0.0552 0.0439
-0.9412 0.3079 —-0.1081 -0.9174 -0.1920 0.1092 0.1390 0.0736
-1.3122 -0.5091 -0.3247 -0.7995 ~1.0491 0.0907 0.0735 0.1235
-1.6521 -2.1752 ~2.5548 -0.8224 -2.7617 1.034% 1.0378 1.0286

Table 2. Input Test Pattern for the 6-Bus Case

P(2), P(3), P({4), P(5}), p(6), Q{4), Qs), Q(e)

0.400 0.600 -0.,700 -0.700 =-0.700 =-0.700 -0.700 =-0.700
0.200 0.433 -0.233 -0.147 -0.324 -0.064 -0.064 -0.049
0.467 0.349 -0.566 -0.076 =-0.260 -0.147 -0.017 -0.096
0.556 0.588 -0.579 -0,177 -0,512 =-0.206 =-0.069 -0.213
0.325 0.492 -0.185 -0.097 <~0.619 =-0.045 =-0.030 -0.154
0.108 0.253 -0.125 -0,109 -0.167 =-0.028 =0.037 -0.057
1.063 0.552 -0.431 -0.652 =-0.699 -0.175 =0.306 -0.145
0.417 0.952 -0.592 -0.302 -0,621 =-0.123 ~0.118 -0.155
0.574 0.661 -0.230 -0.584 -0,551 -0.044 =-0.203 -0.206
0.455 0.806 -0.665 -0.509 -0.216 =0.315 =-0.104 -~0.064
0.859 0.592 -0.477 -0.591 -0.533 -0.,131 -0.213 -0.174
0.703 0.458 -0.591 -0.485 -0.206 -0.286 =-0.236 -0.088
0.601 0.805 -0.640 -0.557 ~-0.466 -0.312 -0.241 -0.138
0.479 0.346 -0.237 -0.344 -0.332 -0.070 -0.121 =-0.114
0.356 - 0,592 -0.164 -0.425 -0.457 =-0.039 -~0.070 -0.132
0.882 0.782 -0.693 -0.685 ~0.459 -0.333 -0.218 -0.119
0.288 0.324 -0.272 -0.202 -0.210 =-0.106 -0.093 -0.068
0.422 0.740 -0.583 -0.589 -0.098 -0.194 -0.262 -0.026
0.579 0.757 -0.484 -0.361 -0.633 =-0.130 -0.099 =-0.224
0.451 0.482 -0.400 -0.429 -0.201 =-0.128 -0.112 -0.089
0.207 0.565 -0.578 -0.120 -0.160 =~0.184 -0.052 =-0.034
0.427 0.576 -0.148 -0.650 -0.315 =-0.063 -0.099 -0.106
0.450 0.658 =-0.417 -0.513 -0.293 -0.106 -0.239 -0.108
0.498 0.366 -0.097 -0.321 -0.538 -0.020 -0.103 -0.109

Table 3. Output Test Pattern for the 6-Bus Case

d{(2),

-5.798
-1.461
-1.206
-1.238
-1.387
-1.474
-1.018
-0.969
-0.928
-1.517
-0.856
~1,326
~1.349
-1.230
-1.270
-1.311
-1.458
-1.038
=1.030
-1.197
-1.407
-1.315
-0.952
-1.322

d(3),

-6.580
-0.963
-0.829
-0.546
-1.502
-1.399
-2.045

0.991
-0.881

1.112
-1.064
-0.749

0.725
~1.632
-0.822
-0.012
-1.251

1.104
-0.227
~0.479

0.494
-0.777

0.085
-2.255

d{4),

-7.211
-3.232
-3.981
~4.088
-3.142
-2.904
-3.717
-4.163
-3.193
-4.303
-3.779
-4.051
-4.278
-3.181
-3.053
-4.385
-3.290
-4.039
-3.866
-3.567
-4.064
~3.002
-3.618
-2.893

d(s),

~-6.234
-1.106
~0.843
-1.223
-1.282

d(6},
-8.772

vi4),

1.009
1.029
1.022
1.009
1.027
1.030
1.028
1.017
1.030
1.017
1.02%
1.010
1.003
1.032
1.039
1.018
1.024
1.015
1.021
1.029
1.015
1.048
1.019

v(5),

0.990
1.028
1.034
1.018
1.026
1.031
1.005
1.017
1.010
1.020
1.014
1.006
0.998
1.023
1.027
1.009
1.024
1.007
1.018
1.025
1.028
1.029
1.007
1.027

Table 4. Output from a Fast-Decoupled Power

di2y, d{3),
-5.812 -6.589
-1.295 -0.,958
-1.509 -0.822
-1.283 -0.430
-2.305 -1.818
-1.288 -1.533
-1.286 -2.406
-0.413 1.063
-0.552 -0.470
-1.700 0.762
-1.211 ~-1.200
-1.114 -0.838
-1.636 0.749
-0.678 -1.691
~1.808 -1.353
-0.742 0.459
-1.096 -1.005
-1.388 1.050
-0.689 -0.290
-1.751 -0.735
-1.206 0.796
-1.175 -0.538
-1.136 0.024
-0.985 -1,728

RESULTS

Flow for the 6-Bus Case
a4y, di5), die),
-7.215 -6.242 -8.781
-3.162 -1.041 -2.966
-4.046 -0.936 =-2.672
-4.145 -1.226 -3.229
-3.411 -1.674 -4.630
-2.860 -1.004 -2.829
-3.829 -3.450 -5.184
-4.009 -0.880 -2.453
-3.055 -2.153 -3.281
-4.378 -1.910 -1.855
-3.889 -2.738 -3.855
-3.967 -1.997 -2.551
-4.358 -2.109 -2.603
-3.031 -1.743 -3.330
-3.228 -2.360 -3.859
-4.190 -2.394 -2.569
-3.176 -1.112 -2.606
-4.137 -1.741 -1.230
-3.727 -1.578 -3.346
-3.748 -2.032 -2.670
-4.008 -0.364 -1.363
-2.962 -2.516 -2.851
-3.687 -1.856 -2.342
-2.781 -1.843 -4.067

V4,

1.009
1.032
1.035
0.996
1.039
1.023
1.018
1.010
1.037
1.013
1.028
1.019
1.010
1.023
1.034
1.016
1.016
1.023
1.027
1.032
1.011
1.048
1.012
1.048

vi5),

0.990
1.034
1.042
1.002
1.029
1.029
0.997
1.018
1.015
1.019
1.011
1.020
1.000
1.025
1.024
1.008
1.017
1.010
1.030
1.023
1.022
1.027
0.999
1.030

v{(6),

1.016

1.013
1.018
1.020
1.001
1.021
1.021
1.025
1.011
1.016

vie),

1.001
1.025
1.026
0.983
1.010
1.021
1.006
1.006
1.003
1.023
1.009
1.029
1.001
1.021
1.019
1.007
1.009
1.022
1.015
1.022
1.012
1.020
1.004
1.012

Figures 4 and 5 show the 6-bus and 24-bus test systems
respectively used in the analysis.
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Fig. 4. The 6-Bus Test System
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Fig.5. The 24-Bus Test System

Table 5 shows results of using the one-layer neural
network without the feedback for predicting power flow
results for the 24-bus test system. The table shows bus
voltage magnitudes and angles and real and reactive power
generations after the first iteration. Before the next
iteration, a non-linear feedback as mentioned in an ear!ler
section, is employed and results after the first i.terauon
following the application of the feedback are shown 1n Tabl_e
6. The instant increase in accuracy due o the feedback is
obvious from the data. Table 7 shows the same after the
second iteration following feedback. This table sho.uld be
compared with Table 8 which shows results of applying the
fast-decoupled method on the test system. It can be observed
from these tables that the ANN solution. approaches the
numerically found accurate values within only two

iterations.

Table 5. Results From the ANN Without

Feedback for the 24-Bus System
voltage power generated
[P.U.] (deg] (Mw) [MVAR]
1.00000 0.0000 52.22 70.67
1.00000 -0.0039 192.00 64.05
0.93111 1.5279 0.00 6.54
0.94321 -2.3291 0.00 5.01
0.97315 -2.4885 0.00 20.60
0.96663 -5.0386 0.00 3.16
0.96000 1.6768 300.00 53.07
0.93704 -3.1830 0.00 44.14
0.94240 1.2245 0.00 1.08
0.96485 -1.0000 0.00 3.29
0.97516 8.5366 0.00 236.58
0.96463 9.9677 0.00 28.54
0.99000 14.8287 §91.00 117.46
1.00000 10.7915 0.00 126.67
1.01000 18.2637 215.00 100.69
1.01000 17.7543 155.00 77,13
1.01897 21.7430 0.00 55.20
1.01500 22.8606 387.89 -27.39
1.00376 17.3551 0.00 28.40
1.00825 19.3239 0.00 61.89
1.02500 23.8085 386.42 78.47
1.04500 29.6516 296.09 30.94
1.01000 21.2384 660.00 23.71
0.98753 12.0867 0.00 20.79

pover demand
[(MW) [MVAR}
115. 32,
117. 3s.
208. 38.
90. 23.
8S. 22.
151, 35.
185. 45.
202, 45.
218. 52.
250. 65.
0.00 0.
0.00 0.
305. 74.
215, 49.
349. 78.
128. 38,
0.00 0.
380. 79.
212. 53.
145. 36.
0.00 Q.

0. ]
0.00 0.
] 0

Table 6. Results From the ANN With Non-
Linear Feedback for the 24-Bus System After

One Iteration
voltage pover generated
[pP.U.] [deg] [MW] [MVAR)
.00000 0.0000 254.14 40.72
.00000 -0.1558 192.00 26.83
.95837 -0.2835 0.00 .00
.96995 -1.8450 0.00 0.00
.98891 -1.8256 0.00 0.00
.00920 -3.5718 0.00 0.00
.96000 0.4373 300.00 37.07
.95182 -2.3122 0.00 0.00
.96951 -0.5304 0.00 0.00
.99624 -1.5948 ¢.00 0.00
.98755 2.7948 0.00 0.00
.98508 3.6223 0.00 0.00
.99000 6.1452 $91.00 18.95
.00000 3.7534 0.00 88.03
.01000 7.3503 215.00 -2.25
.01000 7.1286 155.00 104.51
.015%9 9.0756 0.00 c.00
.01500 9.6873 387.89 -84.52
.00413 7.0270 0.00 .00
.00631 8.1231 0.00 0.00
.02500 10.1649 386.42 170.04
.04500 12.9786 296.09 81.94
.01000 9.2032 660.00 78.28
.00422 4.5016 0.00 .00

power demand

[MW) [MVAR]
115.00 32.00
117.00 35.00
208.00 38.00

90.00 23.00
85.00 22.00
151.00 35.00
155.00 45.00
202.00 45.00
218.00 52.00
250.00 65.00

0.00 0.00

c.00 0.00
305.00 74.00
215.00 49.00
349.00 78.00
128.00 38.00

0.00 0.00
380.00 79.00
212.00 53.00
145.00 36.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

Table 7. Results From the ANN With Non-
Linear Feedback for the 24-Bus System After

type
BUS 1 slack
BUS 2 {V|-cont
BUS 3 load
BUS 4 load
BUS 5 load
BUS 6 load
BUS 7 IVi-cont
BUS 8 load
BUS 9 load
BUS 10 load
BUS 11 load
BUS 12 load
BUS 13 |VI-cont
BUS 14 |V|-cont
BUS 15 |V|-cont
BUS 16 |Vi-cont
BUS 17 load
BUS 18 |V}-cont
BUS 19 load
BUS 20 load
BUS 21 (V|-cont
BUS 22 jV|-cont
BUS 23 |V|~-cont
BUS 24 load
type
BUS 1 slack
8US 2 (Vi-cont
BUS 3 load
BUS 4 load
BUS 5 load
BUS 6 load
BUS 7 {V{-cont
BUS 8 load
BUS 9 load
BUS 10 locad
BUS 11 load
BUS 12 load
BUS 13 }jVi-cont
BUS 14 (V|-cont
BUS 15 jV{-cont
BUS 16 {V|-cont
BUS 17 load
BUS 18 |V|-cont
BUS 19 load
BUS 20 load
BUS 21 |V|-cont
BUS 22 |V|-cont
3US 23 |V]|-cont
1S 24 load
type
BUS 1 slack
BUS 2 |Vi-cont
BUS 3 load
BUS 4 load
BUS 5 load
BUS 6 locad
BUS 7 |V|-cont
BUS 8 load
BUS 9 load
BUS 10 load
BUS 11 load
BUS 12 load
BUS 13 |V|-cont
BUS 14 |Vi-cont
BUS 15 1V|-cont
BUS 16 |V[-cont
BUS 17 load
BUS 18 {V|-cont
BUS 12 load
BUS 20 load
BUS 21 {V|-con
BUS 22 |V|-cont
BUS 23 (Vi-cont
BUS 24 load
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Two Iterations

voltage power generated
[P.U.] [deg) [MW] [MVAR]
00000 0.0000 194.31 51.59
.00000 -0.0627 192.00 25.88
.95868 0.5812 0.00 0.00
97035 -1.2976 0.00 0.00
.98903 -1.4075 0.00 0.00
.00951 -2.9111 0.00 c.o0
.96000 1.4201 300.00 35.76
.95199 -1.3848 0.00 0.00
.96985 0.3613 0.00 0.00
.99652 -0.8065 0.00 0.00
.98731 3.8174 0.00 0.00
.98486 4.5582 0.00 .00
.99000 7.1105 591.00 20.08
.00000 4.9288 0.00 88.54
.01000 8.6599 215.00 -4.82
.01000 8.4001 155.00 100.26
.01562 10.3777 0.00 0.00
01500 10.9673 387.89 -90.48
. 00419 8.2201 0.00 0.00
20635 9.2323 0.00 0.00
22500 11.4018 386.42 165.48
34500 14.1829 296.09 81.30
.01000 10.2304 660.00 75.71
.00386 5.5917 0.00 0.00

power demand

(MW} (MVAR]
115.00 32.00
117.00 35.00
208.00 38.00

90.00 23.00
85.00 22.00
151.00 35.00
155.00 45.00
202.00 45.00
218.00 52.00
250.00 65.00

0.00 0.00

0.00 0.00
305.00 74.00
215.00 49.00
349.00 78.00
128.00 38.00

0.00 0.00
380.00 79.00
212.00 S3.00
145.00 36.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00



Table 8. Results From the Fast-Decoupled
Power Flow for the 24-Bus System

type voltage power generated power demand
(P.U.} (deg] (MM] [MVAR) (MW) [MVAR)

BUS 1 slack .00000 0.0000 166.76 57.24 115.00 32.00
BUS 2 |Vl-cont 1.00000 -0.0173 192.00 25.81 117.60 35.00
BUS 3 load .95883 0.9976 0.00 0.00 208.00 38.00
BUS 4 load .97041 -1.0363 0.00 0.00 %0.00 23.00
BUS 5 load .98914 -1.2155 0.00 0.00 85.00 22.00
BUS 6 locad .00972 -2.6025 0.00 0.00 151.00 35.00
BUS 7 |VI-cont 0.96000 1.8815 300.00 235.12 155.00 45.00
BUS 8 load .95207 -0.9556 0.00 0.00 202.00 45.00
BUS 9 load .96997 0.7806 0.00 0.00 218.00 $2.00
BUS 10 load .99671 -0.4394 0.00 0.00 250.00 65.00
BUS 11 load .98721 .3018 0.00 0.00 0.00 0.00
BUS 12 load .98477 .0025 0.00 0.00 0.00 0.00
BUS 13 |V|-cont 0.99000 .5685 591.00 20.52 305.00 74.00
BUS 14 [V|-cont 1.00000 .4819 0.00 88.65 215.00 498,00

BUS 15 |V|-cont

BUS 16 jV|-cont 1.01000 -9984 155.00 97.81 128.00 38.00
BUS 17 load .01561 10.9951 0.00 0.00 0.00 0.00
BUS 18 |Vi-cont 1.01500 11.573% 387.89 -93.03 380.00 79.00

4
5
7
5
.01000 9.2781 215.00 -6.27 349.00 78.00
8
0
1
8
9

PR R R RO 0000 000

BUS 19 load .00420 .7829 0.00 0.00 212.00 s3.00
BUS 20 load .00635 .7558 0.00 0.00 145.00 36.00
BUS 21 {Vi~cont 1.02500 11.9861 386.42 163.28 0.00 0.00
BUS 22 (Vi-cont 1.04500 14.7520 296.09 81.04 0.00 0.00
BUS 23 |Vi-cont 1.01000 10.7158 660.00 74.61 0.00 0.00
BUS 24 load .00369 6.1056 0.00 ¢.00 0.00 0.00

It was felt that a good indicator of relative speeds of
solution would be the time it took for solutions to sonverge
for both the ANN and the conventional methods viz., the
Gauss-seidel and the fast-decoupled methods. Fig. 6 shows a
comparison of these factors. Two cases for the fast-
decoupled method are shown in the figures. These are:

FD-I: Solution by the fast decoupled method with the
Jacobian matrix already calculated and inverted.

FD-II: Solution by the fast decoupled method before the
Jacobian matrix has been calculated and inverted.

The time shown is that on an "80286" IBM-compatible
machine running at 12 MHz. From the figure it is obvious
that the Gauss-Seidel method is not appropriate for real-time
applications. The ANN solutions compare very well with the
fast-decoupled method. In fact, the ANN solution approaches
the actual solution faster. However, no significant
improvement in the iteration errors are observed in the ANN
case after the initial iterations.

FD-I
FD-lI
G-S
ANN

Log (Errors)

CPU Time

Fig. 6. Comparison of Errors Vs. CPU Time on
"'80286" IBM Machine at 12 MHz.

CONCLUSION

The advantage of fast analog computing is taken for
power system analyses. Such analog neural network with
single layer performs linear operation and therefore limited
accuracy can be obtained for a nonlinear system such as a
power system. To increase accuracy, the nonlinear feedback
to evaluate an error can be applied. Although the method was
applied to a power system only, it is obvious that the
approach is quite general and can be used for fast analysis of
any other nonlinear system.

It should be noted that in order to obtain an fast
approximate solution using neural net (without nonlinear
feedback) no information about power system parameters is
required such as line impedances, transformer tap ratios etc.
The neural nctwork can be trained using operating data such
as bus powers and bus voltages. This approximate solution
should be adequate for security assessment and for taking
proper control decisions.
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APPENDIX

The power flow data for the 6-bus test system follows:

BUS DATA
voltage
[PU] [deg] [MW]
BUS- 1 slack 1.05 0.0 0.
BUS- 2 |V{-cont 1.05 0.0 50.0
BUS- 3 load 1.07 0.0 60.0
BUS~ 4 load 1.0 0.0 0.0
BUS- 5 load 1.0 0.0 0.0
BUS- 6 load 1.0 0.0 0.0
LINE DATA
from to R X
1 BUS- 1 BUS~ 2 .100 .200
3 BUS- 1 BUS- 5 .080 .300
4 BUS~ 2 BUS- 3 .050 .250
5 BUS- 2 BUS- 4 .050 .100
6 BUS- 2 BUS- 5 .100 .300
7 BUS- 2 BUS- 6 .070 .200
8 BUS- 3 BUS- 5 .120 .260
9 BUS- 3 BUS- 6 .020 .100
10 BUS- 4 BUS- 5 .200 .400
TRANSFORMER DATA
from to tap phase
2 BUS- 1 BUS- 4 0.95 4.00000
11 BUS- 5 BUS- 6 1.00 5,00000

power gen.
[MVAR]

0.0
54,
0.0

0.0
4 10.0
0.0
70.0
70.0
70.0

B MVA Rat.
.040 175.0
.060 175.0
.060 175.0
.020 175.0
.040 175.0
.050 175.0
.050 175.0
.020 175.0
.080 175.0

X MVA Rat.

[MW]

power dem.
[MVAR]

0.0
12.0
0.0
70.0
70.0
70.0

e

.200 175.0 2
.300 175.0 2

The power flow data for the IEEE-24 bus test system

follows:
BUS DATA
voltage power
[PU] [(degq] [MW]
BUS- 1 slack 1.0 0.0 185.91
BUS~ 2 |V|-cont 1.0 0.0 192.0
BUS- 3 load 1.0 0.0 0.0
BUS~ 4 load 1.0 0.0 0.0
BUS- 5 load 1.0 0.0 0.0
BUS- 6 load 1.0 0.0 0.0
BUS- 7 |V|-cont 0.96 0.0 300.0
BUS~ 8 load 1.0 0.0 0.0
BUS- 9 load 1.0 0.0 0.0
BUS-10 load 1.0 0.0 0.0
BUS-11 locad 1.0 0.0 0.0
BUS-12 load 1.0 0.0 0.0
BUS-13 |V|-cont 0.99 0.0 591.0
BUS-14 |V|-cont 1.0 0.0 0.0
BUS-15 |Vj-cont 1.010 0.0 215.0
BUS-16 |V]-cont 1.010 0.0 155.0
BUS-17 load 1.0 0.0 0.0
BUS-18 {V|-cont 1.015 0.0 387.89
BUS-19 load 1.0 0.0 0.0
BUS-20 load 1.0 0.0 0.0
BUS-21 |V|-cont 1,025 0.0 386.42
BUS-22 [V]-cont 1.0645 0.0 296.09
BUS-23 |[Vi=-cont 1.01 0.0 660.0
BUS-24 load 1.0 0.0 0.0
LINE DATA
from to R X
1 BUS- 1 BUS- 2 .0026 .0139
2 BUS- 1 BUS- 3 .0546 L2112
3 BUS- 1 8UsS- 5 .0218 .0845
4 BUS- 2 BUS- 4 .0328 L1267
5 BUS- 2 BUS- 6 .0497 .1920
6 BUS- 3 BUS- 9 .0308 .1190
8 BUS- 4 BUS- 9 .0268 .1037
9 BUS- 5 BUS-10 .0228 .0883
10 BUS- 6 BUS-10 .0139 .0605
11 BUS- 7 BUS- 8 .0159 .0614
12 BUS- 8 BUS- 9 .0427 .1651
13 BUS- 8 BUS-10 L0427 .1651
18 BUS-11 BUS-13 L0061 .0476
19 BUS-11 BUS-14 .0054 .0418
20 BUS-12 BUS-13 .0061 .0476
21 BUS-12 BUS-23 .0124 .0966
22 BUS-13 BUS-23 .0111 .0865
23 BUS-14 BUS-16 .0050 .0389
24 BUS-15 BUS-16 .0022 .0173
25 BUS-15 BUS-21 .0063 .0490
26 BUS-15 BUS-21 .0063 .0490
27 BUS-15 BUS-24 .0067 .0519
28 BUS~16 BUS-17 .0033 .0259
29 BUS-16 BUS-19 .0030 .0231
30 BUS-17 BUS-18 .0018 .0144
21 BUS-17 BUS-22 L0135 .1053
32 BUS-18 BUS-21 .0033 .0259
33 BUS-18 BUS-21 .0033 .0259
34 BUS-19 BUS-20 .0051 .0396
35 BUS-19 BUS-20 .0051 .0396
36 BUS-20 BUS-23 .0028 L0216
37 BUS-20 BUS-23 .0028 L0216
38 BUS-21 BUS-22 .0087 .0678
TRANSFORMER DATA
from to tap phase
7 BUS- 3 BUS-24 0.95 0.00000
14 BUS- 9 BUS-11 1.00 0.00000
15 BUS- 9 BUS-12 1.00 0.00000
16 BUS-10 BUS-11 1.00 0.00000
17 BUS-10 BUS-12 1.00 0.00000
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gen.

[MVAR] [MW]

97.28 115.0
-14.91 117.0
0.0 208.0

PPN
[oYoXoX~rRoRoRoloNoNoNoNoNoNoNoNoleNojoNalal

[eNoYoleYoRoNoRoRoNololoNoRoooleNo e oo

w

.23055
.02860
.01145
.01715
.02600
.01610
.01405
.01195
1.2295
.00830
.02235
.02235
.0499%5
.04395
.04995
.10150
.09090
.04090
.01820
.05150
.05150
.05455
.02725
.01155
.C1515
.01106
.02725
.02725
.04165
.04165
.02275
.22275
.27120

.0839
.0839
.0839
.0839
.0839

90.0

85.0
151.0
155.0
202.0
218.0
250.0

0.0
0.0

305.0
215.0
349.0
128.0

MVA R
400.0
400.0
400.0
400.0
400.0

power dem.
[MVAR)

32.0
35.0
38.0
23.0
22.0
35.0
45.0
45.0
52.0
65.0
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