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ABSTRACT

In the work reported here, a computationally
efficient algorithm for the solution of elliptic partial
differential equations on rectanguiar domains is given.
The algorithm uses the "strong implicit” approach and
the solution is based on the successive reductions of the
grid pattem size. The algorithm requires only four to
five iteration steps to reach a solution.

' INTRODUCTION

Elliptic partial differential equations are used to
solve many engineering problems, such as current flow
in distributed systems, thermal conduction, and
electrostatic field analysis. These equations are essential
for analysis of semiconductor devices and for analysis
of parasitic effects in high speed electronic circuits. An
algorithm will be illustrated for the solution of the well-
known Poisson equation

g V2V = Q@y) M

where V(xr,y) is the scalar field variable, Q(x,y)
Tepresents a source term, and the parameter g
characterizes a medium property. In the thermal
conduction problem, V(x,y) cormresponds to temperature,
Q(x,y) represents the power source, and g is the thermal
conductivity. In the electrostatic problem, V(x.y),
Q(x,), and g correspond to voliage, charge and the
dielectric constant, respectively,

The numericai solution of such problems, using the
finite difference representation of the partial derivatives,
results in a problem where the repeated solution of a set
of linear equations in matrix form:
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A isann:nsqmmauix,Visaunkmwnn-vecto,
and @ is a known n-vector on the right side of the
equation.

For any practical problem, the number of linear
equations to be simultaneously solved exceeds 1000 for
two dimensions and 10000 for three dimensions. Such
large systems of equations can not be solved by
traditional methods; many special approaches are used
instead (Selberherr 1984) (Ortega and Rheinboldt 1970).
The simplest is the "relaxation method” which usuaily
requires a few hundred or more iterations. To reduce
the computational effort by two or three times, the
algorithm is often modified by introducing the
"overrelaxation" parameter. A more efficient and more
complicated algorithm, uses the "strongly implicit"
approach for the solution of matrix equation (2). The
following formula is used in an iterative procedure for
finding unknown vector V (Selberherr 1984)(Stone
1968)(Wilamowski and Jacquot 1991):

Vo=V + 4. (Q-4V,) 3

V, and V,, respectively, are the previous and the new
values of the unknown vector V during the iteration
procedure. The matrix A, is an approximation to the
matrix A, and is chosen in such a way that it can be
easily inverted. In equation (3), the inversion of matrix
A, is equivaient o finding an approximate solution.
Many different algorithms for approximate solutions are
known (Selberherr 1984). Some methods use the matrix
inversion technique where certain elements are
neglected in order to preserve memory space and
shorten the computation time. The best known
algorithm, developed by Stone (Stone 1968), usually
requires about 20 iterations to achieve an accuracy
similar to that of the relaxation method’s thousand
iterations.
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Another method, known as the "cross-type” algorithm

(Wilamowski and Jacquot 1991), requires about 8-10
iterations for the same accuracy. The algorithm
presented herein uses a new method of finding the
approximate solution, and it is more effective than
others. Using this new algorithm, a solution can be
found in four or five iteration steps.

FUNDAMENTALS OF THE ALGORITHM

In order to achieve rapid convergence using the
iteration procedure given by (3), the approximate
solution should be as accurate as possible. This
accuracy is achieved by first finding the solution for a
less dense grid pattern, and then repeatedly
transforming the grid into smaller sections. It should be
emphasized that for each grid, the implicit sojution can
be easily found by using the equation derived from

Figure 1:
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The error in the final solution is caused by the large
grid size for the first few steps. The principle of the
grid reduction technique is illustrated in Figure 2. The
essence of this approach is the use of rectangular and
rhomboid grids commutatively.

Fig. 2 lllustration of the grid density increase

The algorithm for the solution requires the following

steps:

1. Initially, the g parameters for all possible grid
sizes have to be found. This procedure is
started from the most dense grid pattern. The
values of the g parameters for larger nets are
found using the algorithm illustrated in Figure 3.
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This computation is done once prior to the
iteration procedure using equation (3). For the
nonlinear systems where the g parameters are a
function of node potential, new values of g
parameters have to be found in each iteration
step.

2. The charges Q(x,y) associated with each node
for each grid size have to be computed. This
process starts from the most dense grid pattern.
The density of the grid pattern is reduced by
splitting the charge of the eliminated nodes
among the neighboring nodes proportional to
their g parameters as shown in Figure 3. This
process of charge computation is required for
each iteration step in equation (3).
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Fig. 3. Parameter transformation between gnids of
different sizes.

3. Computation of the voltage distribution starts
from the less dense grid and proceeds for denser
grids using equation (4) as illustrated in Figure
L. It is recommended to start with a reasonably
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dense grid, for which the implicit algorithm will
not require significant computational effort. For
example.forme3x4gridshowninl~'igure2.
only the voitages of six nodes have to be found
inmeﬁrstswp.Notc,thalmyshapuofthc
rectangular areas can be solved using the
proposed approach.

4. Based on the approximate solution of voltages
V,meappmximaledchargesatwchnodecanbe
computed using the equation:

[ ]
Q- ('l' VR MR l;‘)m +
- (“' Vi + 8I:I V+14 + g, Viea * ‘;‘ ‘?—U)
)

This procedure corresponds to the matrix
multiplication AV in equation ).

5. Computed values of Q, are now subtracted from
the initial values of Q corresponding to the
computation of (Q - A V) term in the equation
(2

6. Incremental values of AQ obtained in step 5 are
now used in step 2. Steps: 2, 3 4, and 5 are
repeated iteratively. Since the incremental values
are used in the iteration procedure, step 4 is
modified so that the voltages from previous
steps are corrected by adding the incrementai
values of AV obtained in step 3.

COMPUTATIONAL RESULTS

The result of the algorithm is illustrated with the
simpie case of a charge source located near one corner
of square shape. The results of the computations for
each iteration step are shown in Figure 4. Notice the
very rapid convergence. The solution is reached after
approximately four iteration steps. For the same
example and the same accuracy, the "cross-type”
algorithm (Wilamowski and Jacquot 1991) required
seven iteration steps and the Stone algorithm (Stone
1968) reached a solution after 14 iteration steps. The
relaxation method requires about 300 iteration steps.

Figure 5 presents the microscale errors e;; defined
by equation (6) which would eventually be zero at each
node for a pure finite difference approach. Note that the
errors in Figure 5 are drawn using a different scale for
each iteration step. In the example presented for the
purpose of demonstration, the distribution used was
very simple. When more complicated source
distributions were used, the convergence was equally
rapid. ’
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Fig. 4 Scalar field distribution obtained for the first six iteration steps
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The method presented here is very efficient for
homogenous materials and seems to be very suitable for
solving the Poisson equation for the numerical analysis
of semiconductor devices (Greenfield and Dutton
1980)(Wilamowski, Staszak and Mattson 1992). The
method was also tested for cases with nonhomogeneous
materials, where it was assumed that the medium
property g differed by two orders of magnitude. In
these cases, the number of required iteration steps
increased by a factor of 3 to 5. It should be noted that
the presented algorithm can be easily extended for three
dimensional structures. Also, in the case of
nonhomogeneous mediums, the variable size grid can
be implemented without any significant drawback in
computational effort.
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