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ABSTRACT

A method of ladder simulation has been developed which eliminates the need for tables. This method is
general enough to be used for all ﬁlwrtypu.andinsomecmwillgamwsevaalpmotypufonhe
same transfer function. Software has been developed which implements this aigorithm for ladder filter
synthesis, and results are shown.

INTRODUCTION

Modem analog filter designs and simulations fit into two categories: cascade prototypes and ladder
prototypes. Although much easier to design, the cascade simulations have many drawbacks including the
propagation of error through each cascaded stage and sensitivity of parameter tolerances. Inspite of these
drawbacks, the case and generality of cascade designs make them the more common choice. In the past,
ladder prototyping has required filier designers to use tables {1]. These tables are difficult to use and do not
offer the complete specrum of possible filters. Unfortunately, modem day filter designs such as switched
capacitor {2] and switched current {3,4] require ladder prototyping. Idealy, a designer would like to use
currently available software such as FIESTA {5] or FILTER (6] to generate the desired filter transfer function
and then use a general algorithm to complete the ladder design.

Herein, a general algorithm which completes the ladder prototype simulation is developed and implemented
in a new program called LADDER. Not only is this algorithm better than the previously used tables in its
generality, but it can also generate several circuits to simulate the same equation for the cases of Inverse
Chebyshev and Cauer-Elliptic type filters. Included with this algorithm is a front-end equation design
algorithm for the design of filter ransfer functions and post-design verification algorithms.

The software package LADDER has all of the features of the program FILTER (6] for transfer function
deveiopment and testing. Transfer function approximation algorithms include Butterworth, Chebyshev,
Inverse Chebyshev, Cauer, and Bessei-Thompson. Furthermore, graphics routines allow the ability to see
pole-zero locations and how they affect magnitude, phase, and transient responses.

Additional frequency transformations, (1), are added to the transfer function development for even order
special cases. In order for a filter to be realizabie in ladder form, the order of the denominator must be
greater than the order of the numerator. A special frequency transformation wiil transform the largest
conjugate zero pair, @, 1o infinity, thus reducing the order of the numerator by 2, and allowing the
simulation of even order filters. In addition, another transformation is introduced for filters without a
maximum at zero, for exampie even order Cauer and Chebyshev filters. For these filters, the first
maximum, o, on the frequency scale, is transformed to zero. The second transformation allows the design
of even order Cauer and Chebyshev filters with equal terminating resistances. Equation (2) normalizes (1)
so that one frequency in @, Wp, maps (o the same frequency in €. Figures 1 through 3 show the
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development of a 418 order filter with these transformations.
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FIGURE 1. Standard transfer function of a 4 arder  FIGURE 2. The same transfer function as in Figure
Cauer filter, 1. but with the largest zero transformed to infinity.
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FIGURE 3. The same transfer function as in Figure
2, but with the first peak transformed 1o zero.

DESCRIPTION OF THE ALGORITHM

The algorithm foilows a classical approach for Butterworth and Chebyshev type filters. This involves
using an auxiiiary functon {7.8] to find an input impedance and then continued fractions to find the values
of the elements. In this paper we are extending this algorithm for transfer functions with conjugate zeros on
the imaginary axis. For these cascs, a simple continued fraction approach can not be used.
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FIGURE 4. Doubly Terminated Ladder Network

Given a transfer function which describes the output voltage with respect to the input voltage, it is desired
10 find the network impedance Zy = Ry + jXn. For the circuit shown in Figure 4, the transfer function can

be represented by (3).

Using an auxiliary function, A(jw), of the form shown in (4), one can find an indirect relationship between
the transfer function and the input impedance, Zy.
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Even if the magnitude of the auxiliary function, JAG® %, is found, it is not trivial to find the corresponding

A(s). This can be dane by separating AG®! % inuo its A(s) and A(-s) terms. Since the magnitude squared
of the denominator of the auxiliary function is equai to the magnitude squared of the denominator of the
transfer function, this separation is easy. Simply substituting the original transfer function denominator

_will solve this probiem. The numerator on the other hand is considerably more difficult. Two methods

could be used (1) find the roots of the numerator polynomial and eliminate the right half plane roots; (2)
solve a series of non-linear equations to find the coefficients. It was found that the first method, although
fast, was not very accurate (only a 2018 order Butterworth could be achieved and only an 11Lh order Caver
could be realized with reasonable accuracy), and the second couid be very accurate but did not converge
quickly. The best choice is to use the first method to get good guesses for the second method. A modified
version of Laguerre’s root finding algorithm was used to find the roots. A comparing routine was then used
10 eliminate the right half plane roots. The remaining roots were then multiplied back together to find good
initial guesses for the non-linear equations.

The second method, solving a system of non-linear equations, takes advantage of the known relationships
between a function A(-s)A(s) and A(s). First, define A(s) and A(s)A(-s) according 10 (6) and (7) respectively.

A =ansV+aniSV 4+ L+ St +aiS + 20 )
AGACS) = koS ™ + kanaST 2+ L+ kaS? + ko %)

Based on (6) and (7), equations can be found for the & terms with respect to the g terms.

ey = (1™ 22 25 (1Yo
)=l 0<i<NR) (8)

N-i
ki = (1 ™ 2af + 23 (1Y aijaiej
= N2<i<N) ®

Using (8) and (9) in an iterauve procedure resuits in a solution with very high accuracy; however, the
process converges very slowly. Once A(s) has been found from A(s)A(-s), Z can easily be computed using

(10). This method for finding the impedance function can be generalized to include all transfer functions.

Ri{1 - A(s)]

S e (10)

FINDING ELEMENT VALUES USING INPUT IMPEDANCE FUNCTION

For transfer functions without zeros, such as Butterworth, Chebyshev and Bessei-Thompson, the approach
used to determine the element values is the classical continued fracuon expansion. This procedure is weil
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documented [9] and straight forward.

The more challenging synthesis is for transfer functions with zeros, such as Cauer and Inverse Chebyshev
filter types. To avoid this complex synthesis, most filters are designed by using filter tables.
Unforumately, these designs are not very flexible. The synthesis strategy used herein allows the designer to
choose from several circuits for the same transfer function. The synthesis involves the removal of a shunt
capacitor and a series resonant LC circuit. The link between the shunt capacitor and the series LC circuit is
important to the design.
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FIGURE 5. Circuits for Inverse Chebyshev and Cauer-Elliptic synthesis

The first problem in solving the synthesis of a given impedance with transmission zeros is the
determination and removal of the shunt capacitor C, in Figure 5). Determination of the capacitor value to

remove is a fairly complex procedure, involving the concurrent solution of (11) and (12). The values for b;
and a; are the coefficients of the numerator and the denominator of the impedance function, looking into the
network, inciuding the shunt capacitor, as shown in (13).

C _blz(N-l)ﬂ-b.,z(Nd)fl...sz(n-S)/‘Z. ..
ZWN-D2-gy2AN-324 3, 710-5)2.. | an

Ca «(boziN-D2 by ZAN-DR4 b zin-SVL .
B a1 2N-32-3,AN-5) 2 agzn- TV 12)

Zs)= ST+ angSN T Ay gsNI 4k ys2 4 s + 2
basN + by SN+ bngSN2 4.+ bys2 + bys2 + bys + by (13)

Determination of C now only requires that the solutions for (1 1) and (12) be the same.

S+

L=2() =5 s
L 72

(14)

Once the shunt capacitor has been removed, the next step becomes determining the resonant inductor value
and removing the resonant circuit from the impedance cquation. The resonant inductor can be calculated
using (14). This equation is easily implementable; since, because of the shunt capacitor, ‘the denominator
of Zis) is now evenly divisible by (zs<+1). Once the inductor has been determined. the complete resonant
impedance (15) can be removed by subtracung the resonant impedance from the impedance function.

Zic= IS ___ IS
LCS2+1 28241 (15)
The process of removing the shunt capacitor and resonant LC circuit continues until all of the resonant

circuits have been removed. At this point. the remaining shunt capacitor, inductor (in the case ot an even
design), and output resistor are found using classical continued fraction.
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SomefeannuofLADDERamdunmsumdintbefollowingmmpla. First, to demonstrate the ladiisr
simnhﬁmofamxawidwmm.a%hadu&cbyshevfuwwinbesynmm This filter will have a
passband attenuation of 5 dB with a comerﬁeqnencyofl.anditwillhaveampbandammaloo

where N, is the number of conjugate zeros. For example the 9th order Cauer filter with , of example 2,
with 4 conjugate zeros could be realized by 24 different circuits, Table 1 shows 4 of them. LADDER wiil

alsogmwacimuitdiagmnofmemﬁzzdchtunfonhcladdusimuhﬁon. Figures 6 and 7 show sample
circuit diagrams for the exampies 1 and 2, respectively.
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FIGURE 6. A ladder filter circuit representation of FIGURE 7. One possible ladder filter circut
the Chebychev filter of exampie 1. implementation of the Cauer filter of example 2.
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FIGURE 9. Monte Cario analysis, of the circuit in
Figure 7, generated by LADDER.

FIGURE 8. LADDER created screen Plot of the
Monte Carlo Analysis of the circuit in Figure 6.
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SET 1 SET 2 SET 3 SET 4
Capacitor | Indwstor JCapacitor | Inductor Capasitor | Indwstor Capasitor | hdwstor
4217957 10.000000 | 4217957 [0.000000 § 4.217957 |0.000000 { 4.315408 |0.000000
0.493792 | 0.493043 § 0.493792 | 0.493043 § 0.493792 | 0.493043 { 0.380009 0.510856
5.613258 10.000000 § 5.613258 |0.000000 | 5.760773 |0.0000004 5.607518 |0.000000
0.358216 |0.541723 0 0.358216 |0.541723§ 0.196744 | 0.569674 | 0.46452¢ |0 524108
5.864998 10.000000 § 6.001309 10.000000 f 6.1504564 |0.000000 § 5.772104 |0.000000
0.197920 |0.566291 § 0.055885 |0.592495 § 0.055816 {0.593226 § 0.197904 |0.586337
6.051322 10.000000 § 6.144997 |0.000000 § 6.286826 |0.000000 § 6.050933 |0.000000
0.054577 [0.606694 § 0.168251 {0.666150 | 0.252218 {0.769390 § 0.054607 0.606356
4.832643 |0.000000 § 3.964243 {0.000000 § 2.915742 [0.000000§ 4.835692 0.000000

TABLE 1. 4 of a possible 24 circuits for the 948 order Cauer filter of exampie 2,
with terminating resistances Rin =Ry = 1.
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FIGURE 10. SPICE generated Monte Carlo FIGURE 11. SPICE generated Monte Cario
analysis of the cascade filter simulating exampie 1. analysis of the ladder filter simulating exampic 1.
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FIGURE 12. SPICE generated Monte Carlo FIGURE 13. SPICE generated Monte Carlo
anaiysis of the cascade filter simulating exampie 2. analysis of the ladder filter simulating exampie 2.

The ability of LADDER to generate many circuits for one transfer function brings up a new problem: How
to find the best circuit? Because of the new circuit choices and to aid in the intuitive feel of ladder
simuiation, additional testing algorithms have been impiemented for verification of the ladder circuits.
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These routines include summed error, sensitivity analysis, and Moate Carlo, Summed error tests a
paﬁcnhrlaida’sxnsiﬁmywckmlmkmascmnmmdwimdcignspedfmﬁm. Sensitivity tests

Poor seasitivity to parameter values is the price which is paid for this simplicity. Unfermnmlxcamtb.
filter design packages such as FIESTA (5] and FILTER {6], do not offer the circuit verification algorithms
hmmdedinLADDER,sonumukalcompaﬂmofhddumdcamﬁlmmdiﬂ'mlL

ladder simulations, is Monte Carlo. Using the transfer functions given in the examples, cascade circuits
were designed by FILTER [6]. Using SPICE files generated by LADDER and FILTER, the cascade and
ladder circuits were tested using a Monte Carlo analysis. Figures 10 and 12 display the analysis of
examples 1 deuﬁngacasadedwgn,andFigmes 11 and 13showthesameanalysisdoneonaladder
implementation. It is clearly obvious that the ladder simulation is less sensitive to parameter variations
than the cascade simulation.

The program LADDER is a powerful tool for advanced analog filter design. LADDER not only completes
the ladder synthesis but also aids in the simulation of designed ladder circuits, Practical filter designs which

need ladder prototypes, such as Leap Frog, Girling-Good, switched capacitor, and switched current circuits,
can use LADDER as a better altemnative 1o tables for ladder prototype design,
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