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Abstract: Ladder filter structures are important for filter designs
with modern circuit elements. This paper presents a modern
algorithm for ladder filter synthesis. This method is general, and
only a few differences in the continued fraction expansion are all that
separates a Butterworth synthesis from a Cauer-Elliptic synthesis.
The generality of this approach also allows the synthesis of transfer
functions designed by non-traditional methods. In addition, the
algorithm generates many possible circuit implementations for
transfer functions with zeros. Finally, a software package LADDER
implements the algorithm. In addition to ladder synthesis, LADDER
includes front end transfer function approximation algorithms and
post-synthesis analysis of ladder circuits.

INTROD N

Modern filter designs such as Switched Capacitor filters or
Switched Current filters use LC ladder prototypes [1,2]. Using
these prototypes for Girling-Good type active filters results in
smaller sensitivity than conventional cascade filters [3]. Therefore,
the synthesis of LC ladder filters is of current attention. The purpose
of this work is to develop and implement a general algorithm for
ladder filter synthesis.

Currently, when designs require a ladder prototype, a designer
completes the task with the aid of tables [4]. Because of their double
and triple entry formats, these tables are difficult to use. The
complex numerical methods involved in generating tables are far
from general. Transfer functions with zeros require very complex
and filter specific algorithms. The most common approach, Cauer’s
algorithm(5], takes advantage of a particular filter’s properties, so
each filter approximation technique needs its own specific algorithm.
This lack of generality makes it an impractical choice for a general
filter synthesis algorithm. For transfer functions with zeros, Cauer’s
approach produces only one circuit implementation, where many are
possible.

The synthesis procedure developed herein, allows the generation
of not just one but many ladder circuit representations for a given
transfer function with zeros. The algorithm is general; it works for
all types of transfer function approximations from Butterworth
through Cauer, and even non-traditional transfer function designs.

PRINCIPLE OF THE ALGORITHM

For transfer functions without zeros, such as Butterworth,
Chebyshev, and Bessel-Thompson type filters, determining element
values involves the classical continued fraction expansion of an

input impedance [6].
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Figure 1. One section of a lowpass ladder network with zeros.

The more challenging synthesis is for transfer functions with
zeros, such as Cauer and Inverse Chebysheyv filter types. Using a
general approach, involving the calculation of the input impedance

using an auxiliary function, the function IA(jw)I? is easy to find [3].
Some problems arise when obtaining A(s) from IA(jw)i2. This
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separation uses two methods 1) find the roots and eliminate those in
the right half plane; 2) solve a system of nonlinear equations. [7}]
describes these procedures in some detail. As a result, for each
section of the ladder, the input impedance, Z, of figure 1, is known
and the values of Cg and either Lg or Cy (the product LeCg
corresponds to a known zero location) must be found. The link
between the shunt capacitor and the series LC circuit is important o
the design problem.

The first problem, in solving the synthesis of a given impedance
with transmission zeros, is the determination and removal of the
shunt capacitor, Cg. One method is discussed in [8]. That method,
however, gives only one choice for the shunt capacitor. Using the
algorithm developed herein, it is possible to choose from as many
capacitors as there are zeros remaining to be removed. Because any
remaining zero can be removed at any time, the total number of
possible solutions to the synthesis problem is ny!, where ny is the
number of conjugate zeros.

Determination of the capacitor value to remove is a complex
procedure. For a given impedance function, Z,(s) in (1), the
removal of the shunt capacitor, Cg, will lead to equation (2), where
the values for the k; are given in (3).
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To remove the LgCy resonant circuit, the denominator of Zg(s)
should be divisible by ([LgCg]-!s2 + 1) with a remainder of 0.
Figure 2 illustrates the division of the denominator of Zg(s) by
z252+1, where z2 = [Ly Cg]-!. Equations for R, and Ry, are given by
(4) and (5), respectively. In order for the remainder to be O, the
numerator of both of these coefficients must be 0.
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Figure 2. Long division of the denominator of Zg by (z252+1).
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Setting the numerators of (4) and (5) equal to zero, substituting
(3) in for k;, and solving for Cg yields equations (6) and (7).
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Concurrent solution of equations (6) and (7) yields the required the
shunt capacitor value.

After removing the shunt capacitor, the next step becomes
determining the resonant capacitor and inductor values. Using the
model shown in Figure 1, the impedance function at B, Zg, is the
sum of the resonant impedance and the impedance function at C, Z,
as shown in (8). After finding a common denominator, equation (9)
shows a relation between the denominators of Z¢ and Zg. Next,
substituting (9) into (8), and solving for Ly yields (10). In (10), the
knowns are Ng, D¢, and z, and the unknown is N¢. Evaluating (10)
at s=j z'! eliminates the unknown, allowing the inductor to be
written in terms of all knowns (11).
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After determining the inductor value, subtracting the resonant
impedance from the impedance function removes the complete
parallel LC circuit.

The process of removing the shunt capacitor and resonant LC
circuit continues until all of the resonant circuits have been removed.
At this point, the remaining shunt capacitor, inductor (in the case of
an even design), and output resistor are found using classical
continued fraction.

ALGORITHM PROCEDURE

The procedure for the developed algorithm follows 7 straight
forward steps.
1. Find the desired transfer function.

2. Calculate the general auxiliary function :
IAGe)? = 1- 2R [T ?
Rou (12
3. Separate IA(jw)I? into its A(s) component using methods
outlined in {7].
4. Calculate the general impedance function:

R, |1-A(@)]
Z\(s)= YA (13)

5. Calculate Cg and remove either by a classical continued fraction
approach [6] for transfer functions without zeros or by using
(6) and (7) and a partial pole reduction for transfer functions
with zeros.

6. Calculate and remove the series inductor either by a classical
continued fraction approach for transfer functions without zeros
or by using (11) and a more complex continued fraction
expansion for the removal of the full resonant impedance for
transfer functions with zeros.

7. Continue steps 5 and 6 until all elements have been removed.

ALGORITHM IMPL EMENTATION

A new software package LADDER implements the algorithm
developed herein. LADDER not only does ladder network synthesis
but also generates transfer functions and completes the design with

post-synthesis analysis. To demonstrate the algorithm, a 7t order
lowpass Cauer filter, with 0p=5, as=100, wp=1.0, and ws=2.0, is
synthesized using LADDER.

Using modern menu driven software, LADDER guides the user
through the transfer function design. LADDER offers brick wall
specifications, with an optional for manual or automatic order
specifications, for traditional functions such as Butterworth,
Chebyshev, Inverse Chebyshev, Cauer, and Bessel-Thompson.
Additionally, LADDER allows the design of transfer functions
transfer functions using interactive pole/zero placement.

Synthesis of transfer functions with equal order numerator and
denominator polynomials requires an additional transformation. This
transformation, (14), transforms the largest conjugate zero pair,

(o, 10 infinity, thus reducing the order of the numerator by 2, while
still maintaining the same basic magnitude response. The

normalization frequency, ®N, maps to the same frequency on both
the w-axis and the Q-axis.
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Another transformation is for filters without a maximum at zero,
for example even order Cauer and Chebyshev filters. This

transformation moves the frequency of the first maximum, o in
(15), to zero and allows the design of even order Cauer and
Chebyshev filters with equal terminating resistances. The
importance of this transformation comes from the fact that ladders
with equal termination resistances are least sensitive to individual

element tolerances. Again, in (15), @\ is a normalization frequency.
m2 o
2 - Wy

Q=—5—7 (15)
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Finally, equation (16) is the combination of (14) and (15), with

k being the frequency normalization constant. This combination
performs both transformations simultaneously.
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Figure 3 presents the transfer function and some relevant data,
as generated by LADDER. Figure 4 shows the magnitude response,
transient response, and s-plane, with the unit circle and pole/zero
locations.

Synthesis of a ladder network follows the procedure given
herein. Because this example has three conjugate zero pairs, six
circuits, as shown in Table 1, are possible. LADDER draws a circuit
diagram of the synthesized circuit, Figure 5 for Set 1.



LOWPASS FILTER - Cauer elliiptic 7 order

ap = 5.000000dB asr = 113.4855dB as = 100,.0000dB
fp=1.000000 fs=2,000000

normalized wp=1.000000 ws=2.0000C" 7
NORMALIZED POLE AND ZERO LOCATIONS: []
0 SINGLE 2EROS: 6 CONJUGATE ZEROS: 5
0 +32.04451531 4
] *+42.49033661 3
2
1
0

POLYNOMIALS :
power denominator numerator
1.00000000
0.40846068
1.89628282
0.61330083
1.05093174
0.23276481
0.15200409
0.01357498

1.00000000
0.00000000
29.3429141
0,00000000
222.774352
0.00000000
491.541571

0 +34.35443393

6 CONJUGATE POLES:

-0.0844561 +30.46180862
-0.0532528 +30.80665158
~0.0176521 +30.98181744
{s? + 0.168912s + 0.220400) Q=2.779359 wo=0.469468
(s? + 0.106506s + 0.653523) Q=7.590270 wo=0.808407
{s? + 0.035304s + 0.964277) ©0=27.81464 wo=0.981976
(s + 0.097738)
frequency scaling factor 1.4142135624
magnitude scaling factor 0.0000276172

Figure 3. Transfer function data generated by LADDER.
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Table 1. 6 circuits for a 742 order lowpass Cauer filter with Ry,,= 2

I{in=:1
Set1 Set2 Set3
Inductwr| Capacitor{| Inductor] Capacitor || Inductor | Capacitor
0.000 | 3.274 0.000 | 3.274 0.000 3.391
0.650 | 0.368 0.650 | 0.368 0.687 0.235
0.000 | 4.242 0.000 | 4.388 0.000 4.236
0.721 0.224 0.769 | 0.069 0.684 0.350
0.000 | 4.509 0.000 | 4.515 0.000 4.403
0.728 | 0.072 0.652 | 0.247 0.727 0.073
0.000 3.799 0.000 | 3.806 0.000 3.799
Set4 SetS Set6
Inductor| Capacitor | Ind uctor | Capacitor|[Ind uctor| Capacitor
0.000 3.391 0.000 | 3.543 0.000 3.543
0.687 | 0.235 0.735 | 0.072 0.735 0.072
0.000 | 4.493 0.000 | 4.375 0.000 4.486
0.769 | 0.069 0.684 .0350 0.721 0.224
0.000 { 4.413 0.000 | 4.292 0.000 4.298
0.594 | 0.403 0.646 | 0.250 0.589 0.406
0.000 | 3.811 0.000 | 3.807 0.000 3.812

Monte Cario analysis completes the synthesis procedure.
Built-in Monte Carlo analysis routines give a quick visual
demonstration of a synthesized filter’s sensitivity. These routines
use known characteristics of ladder forms for a more streamlined
approach than general filter analysis programs. The quick, built-in
analysis routines are especiaily important for designs with multiple
solutions. In the case of filters with multiple solutions, some
solutions will not give practical, well-scaled element values;
however, when several solutions offer a practical circuit, ladder
sensitivity is the next logical criteria. Figure 6 illustrates the Monte
Carlo simulation for Set 1, as produced by LADDER.

CONCLUSION

An algorithm for the synthesis of analog ladder filter prototypes
was developed. The proposed approach is general. In the case of
Butterworth, Chebyshev, and Bessel-Thompson filters, the complex
continued fraction algorithm reduces to a classical continued
fraction. The generality of this approach also allows the synthesis of
transfer functions generated using non-traditional methods.
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Figure 5. The circuit diagram, by LADDER, for Set 1 of Table 1.

The simplicity of the algorithm makes it superior to Cauer’s
method for the teaching of ladder synthesis. For low order transfer
functions, synthesis using only a calculator is possible. Even though
the presented algorithm is relatively simple to use, a personal
computer is very helpful. The software package LADDER offers an
education friendly approach to ladder synthesis. Menu options lead
users through the complete synthesis process, from transfer function
design; to ladder synthesis, with a manual option which shows the
synthesis in a step by step manner; and finally, to post-design Monte
Carlo analysis. LADDER is available from the authors free of
charge.

REFERENCES

(11 G. M. Jacobs, D. J. Allstot, R. W. Brodersen, P. R. Gray,
“Design Techniques for MOS Switched Capacitor Ladder
Filters,” IEEE Trans. Circuits Syst., vol. CAS-25, PP 1014-
1021, Dec. 1978.

T. S. Fiez, D. J. Allstot, “CMOS Switched-Current Ladder
Filters,” IEEE Journal of Solid-State Circuits, vol. SC-25, pp.
1360-1367, Dec. 1990.

M. E. Van Valkenburg, Analog Filter Design, Holt, Reinehart
and Winston, 1982.

R. Saal, Handbook of Filter Design, AEG-Telefunken, 1979.

W. Cauer, Synthesis of Linear Communication Networks,
McGraw-Hill, 1958.

T. C. Fry, “The Use of Continued Fractions in the Design of
Electrical Networks,” American Mathematical Society, pp. 463-
498, July-August 1929.

R. D. Koller, B. M. Wilamowski, “Simulation of Analog

Filters Using Ladder Prototypes,” 2314 Apnual Pittsburgh
Conference on Modeling and Simulation, vol. 23, Pittsburgh,
USA, April 30-May 1, 1992.

A. D. Failkow, “Inductance, Capacitance Networks Terminated
in Resistance,” [EEE Trans. Circuits Syst., vol. CAS-26, pp.
603-640, August 1979.

[2]

(3]

(4
(]
(6]

{71

(8]

....... = —
////’: Naani tude LN ——
41-“- ‘;V/ ‘{
0.0 N ." y
Figure 4. Graphical representations of the magnitude and transient Figure 6. Monte Carlo simulation of Set 1 from Table 1. Inset is the
responses with an s-plane representation of the poles and zeros. expanded passband.

732




AN




