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ABSTRACT

Security control is complex task that is becoming an integral
part of emergy management systems. Its inherent complexity is
derived from the requirements of its on-line structure as well as the
maintenance of general availability of controls under all network
conditions. The type, amount and the periods of most control actions
have to be determined prior to the inception of a disturbance. Artificial
neural networks can be trained to recognize the inter-relationships of
security control and network abnormalities. At the same time, expert
systems can be used to take advantage of the heuristics that are
involved in the process of determining the controls and ensuring their
adequacy. Both techniques are described in some detail, including the
development of working computer models for each. These are tested
on a small power system network and results are shown.

1. INTRODUCTION

Modermn power systems are arguably more vulnerable to
frequent abnormality in operation than the systems of the past.
Present-day transmission lines are being stressed more heavily than
ever before. Delays in new construction of generating and transmi-
ssion equipment have led to loading of lines at close to their thermal
limits, thereby leaving inadequate security margins. Certain lines have
relatively heavier loadings than others because they serve as the major
arteries for shipping power from large, remote generating stations to
urban load centers. Therefore, loss of these or neighboring lines can
cause line overloads, voltage instability, and power imbalance on the
system. Since occurrences of contingencies cannot be ruled out,
control centers have to be prepared with corrective measures to
counter voltage drifts and line overloads. A number of major
blackouts in recent history, which have caused extensive harm, have
contributed toward the placing of a high emphasis on fast and efficient
security control. When carried out properly, such actions can correct
potentially hazardous situations, which otherwise can lead to system
islanding.

Pertinent technical literature on the subject of corrective control
shows a mix of linear and non-linear methods for optimizing the use
of control sources. The linear programming technique has been
extensively used for voltage control and/or for real power flow shifts
in lines [1-6]. First order sensitivities between the dependent
quantities and the controlling quantities have been also been used for
revealing appropriate control sources for corrective strategies [11-13].
Others have used non-linear optimization approaches, such as the full
optimal power flow solutions [7-10]. The expert system approach has
also been experimented with, in conjunction with linear sensitivities,
to provide fast control measures [14-18]. The bus-impedance method
was used in [19] to select lines for switching actions to relieve
overloads.

Typical security control actions entail dispatching of var
sources for voltage control and redistribution of branch flows through
active power rescheduling. A complete list of controls may include:

Generator real power shifts.

Voltage schedules at voltage-controlled buses.
Synchronous condensers.

Phase shifters.

Load tap changing transformers.

Switchable capacitors/reactors.

Static var compensators.

Interruptible load curtailment.

Network topology change by line switching.
Interchange schedules.

This paper categorizes corrective control actions under two
scenarios: (i) emergency control and (ii) preventive control: :I‘he
former actions conceivably go into effect when abnormal conditions
occur in the present state of the system and the latter control actions
are targeted toward the vulnerable or "alert" state wherein credible
contingencies can potentially create abnormal operating states. This
classification is illustrated in Fig. 1. As seen in the figure, emergency
controls can lead the system from the “emergency” state to either an
"alert" state or the "normal"” state.

Preventive control strategy is meant to encounter security
deviations under known contingencies. It can be a very complex task
because, the operator has to ensure the most reliable and economic
solutions while maintaining system security. The task is complicated
by the availability of several control measures out of which, only a
few may be optimally applied toward preventive control. Optimality is
the key word in these control measures.
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Fig. 1. Relationship between emergency and preventive Control.

Use of an expert system and a number of artificial neural
network (ANN) configurations are shown separately in this paper for
recommending emergency and preventive control actions. Artificial
intelligence (Al) techniques have made on-line implementation of
corrective strategies more convenient. At the same time, these
techniques capture both the experience and the intelligence of the
operator and therefore Al-based methods, when implemented, are
suitable for use by inexperienced operators.

A cursory survey of recent technical literature reveals the
increased attention being paid to both expert systems [20-25] and
artificial neural networks [26-34] for application in power system
operation studies. The timeliness of these techniques is also evident
from the well attended international conferences on expert systems
application in power systems (initiated in 1988), a recently concluded
NSF-sponsored workshop on neural networks and the annual
international forum on neural networks applications in power systems
(initiated in 1990). Judging from the existing state of the literature,
there is little doubt in one's mind that artificial intelligence (AI)
techniques and neural nets have great potentials in solving complex
power system problems with the likelihood of improvement in
performance.

Before proceeding any further, brief descriptions of both
paradigms are given in the following sections.



2. THE EXPERT SYSTEM

An expert system is a computer program which is capable of
mimicking the problem solving behavior of a human expert from both
“an internal and an external point of view. The program shouid be
capable of explaining its natural reasoning and should be able to add
new information to its collection of knowledge, called the knowledge
base. In narrow problem domains, expert systems can provide higher
performance, equalling or even exceeding that of human experts.

An expert system acts as a repository for the knowledge and
skill of an expert within a particular field of expertise called the
"domain". Fig. 2 is a block representation of the parts of an expert
system. The collection of rules and facts form the knowledge base.
The inference engine uses the knowledge base and data for a particular
case to infer a conclusion, in the form of a diagnosis of a fault. The
program requests case data which the user can provide, and uses this
with the rules, to produce a conclusion. Knowledge clxcx}anqn is the
process of obtaining an expert's knowledge and presenting it in the
form of facts and rules.

Symbolic representation of knowledge is a unique feature of
expert systems, Natural languages, symbolic logic, production rules,
semantic nets, frames, conceptual graphs and objects can be used for
representing knowledge. The most commonly used representation
scheme is of course, production rules. These are rules like:

IF A THEN B.
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Fig. 2. Parts of an expert system.

3. THE ARTIFICIAL NEURAL NETWORK

The suitability of ANNs to solve pattern classification
problems that require massively parallel computation is now being
widely researched by the scientific community. An artificial neuron as
shown in Fig. 3, is designed to mimic the first order characteristic of a
biological neuron [35]. A number of inputs which could simply be
from external stimuli or represent the outputs of other neurons are all
multiplied by corresponding weights and these weighted inputs are
then summed to determine the activation level of the neuron shown as
the immediate output of the neuron. This output signat is usually
further processed by an activation function f, to produce the neuron’s
final output. The neuron’s output could be input to itself as a
feedback, in which case it would be part of a recurrent neural
network. Otherwise, it would be a feedforward neural network. The
function f in Fig. 3 usually represents a hard limiter, a sigmoid
function or a radial basis function.

The simplest ANNs are constructed with just two layers of
neurons called the input and the output layers. Other networks may
include a number of intermediate levels called the hidden layers as
shown in Fig. 4. Reference [36] describes different networks that can
be used for classification of static patterns. Of these, the perceptron,
the Hopfield net and the Kohonen net have been applied in power
system security classifications.

ANNSs learn by changing their input and output behavior
according to changes in the environment. The basic learning strategies
fall under the categories of supervised and unsupervised learning
schemes. In supervised learning, the actual output is compared with

2

the desired output; the difference is used to adjust the weights for the
next cycle. Simulated annealing and backpropagation methods are the
most widely used techniques in supervised training. In the former
method, random changes are made to the weights to determine those
changes that produce an output with a smaller error than the previous
changes. The process of random changes continues until a solution is
found. In backpropagation, the error between the actual and the
desired outputs 1s fed back to the neuron to adjust its weights.
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Fig.2 An Artificial Neuron
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4. STATIC SECURITY ASSESSMENT AND CONTROL
USING AN ANN

Static security in power systems operation alludes to
determination of the possible violations of bus voltage magnitude and
branch flow limits due to potential faults in the system. It serves two
purposes:

(i) It determines the security state of the present system under all
contingencies and alerts the operator as to the violations.

(ii) It initiates preventive control to retain security and economy
under all such contingencies.

The first purpose can be served by analyzing the system for
every contingency using a fast ac power flow algorithm. However,
repeated solutions of the power flow program incorporating every
single contingency can be enormously time-consuming thus rendering
the method inappropriate for use in real-time. A fast contingency
screening and ranking method coupled with an ANN for determination
of the "security vector’ comprising of voltage magnitudes and branch
flows can be use to improve the performance of static security
assessment.

In static security assessment, one needs to investigate for a set
of real and reactive powers on buses, the condition of line flows
exceeding the maximum ratings and bus voltage deviations from their
lower and upper limits. In alternate terms, for a given vector of bus
powers, a vector of line flows and bus voltage magnitudes has to be
determined and evaluated. This translates into modeling the ac power
flow problem by a neural network. The approach is shown in Fig 3.
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Fig. 3. Neural network for modeling power flow.



The set of power flow equations is modeled by one layer of
the feedforward neural network shown in Fig. 4. The conventional
methods of solving the power flow equations require significant
computational effort and are therefore difficult to use in real time
applications. With an ANN approach, the conventional tedious means
of obtaining solutions of power flow by using numerical methods can
be avoided.

Fig. 4. One layer neural nerwork.

Single layer neural networks represent linear relationships. A
possible approach to incorporate the non-linearities of the power
system network, is to use a feedback loop, as shown in Fig. 5. Line
power vector can be directly computed from bus voltages and line
impedances. Using simple summation with complex arithmetic, the
input vector INg (bus powers) can be obtained from line powers
summation. At the initial state, the vector of line powers Sy_is zero and
there is no feedback - INF is zero. Therefore in the first step the input
vector IN alone, is applied to the neural network and an approximate
initial vector of bus voltages Vg is obtained. In the second step the
difference between input vector IN and feedback vector INF is
computed from line powers S, and bus volitages Vg. Therefore the
neural network operates on the difference (error) and the vector of line
powers is corrected.

INPUT
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VECTOR
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Recalculate
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Fig. 5. Neural network with feedback for power flow Analysis.

Usually a few iterations of the feedback loop are enough to obtain
convergence. The results are comparable with those from obtained
from a fast decoupled method, but the computational effort is smailer
in comparison.

4.1 Supervised Training for Security Monitoring

For a given power system, the ANN can be trained using, for
example the back propagation algorithm, where the error between the
actual and the desired outputs is fed back to the neuron to adjust its
weights. The projection algorithm based on the least squares
approximation technique can also be used for training and was also
found to be efficient and reliable.

For supervised training the exact solutions obtained from a
conventional power flow program was used. The input training data is
comprised of: ) )

(i) net real bus powers (real power generations minus the real power
demands) at all buses except the slack bus, )

(ii) net reactive bus powers (reactive power generations minus the
reactive power demands) at load buses only,

(iii) the voltage magnitudes at voltage-controlled buses only.

The output vectors consisted of:

(i) bus voltage angles at all buses except the slack bus,

(ii) voltage magnitudes at load buses,

(iif) reactive power generations at voltage-controlled buses.

The training was validated on the IEEE 24-bus reliability test
system [37] shown in Fig. 6. Relevant data for performing a power
flow is shown in the appendix. After training was completed
successfully, some comparisons of the performance of the ANN were
done against that of a fast decoupled load flow.
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Fig. 6. The Modified IEEE 24-Bus Test System

Table 1 shows results of using the one-layer neural network with
feedback for predicting power flow results for the test system. Results
following only the second iteration are shown. This table should be
compared with Table 2 which shows results of applying the fast-
decoupled method on the test system. It can be observed from these
tables that the ANN solution approaches the numerically found
accurate values within only two iterations.

4.1 Corrective Control with the Trained Ann

The neurat network described in this paper can be trained to
yield recommendations for corrective control under system
emergencies. Of course, the ANN has to be trained with control
elements as inputs and the controlled quantities as outputs. For
instance, capacitor switching at certain buses can correct a low voltage
problem at a bus which is sensitive to the var injections at those buses.
Therefore, such information has to be fed to the neural network during
training, However, before using the trained network for corrective
control, the operator must have information on sensitivities of
controlled quantities such as, voltages, to the corresponding
controlling elements such as, capacitors or synchronous condenser
outputs.



Table 3 shows results of using real power generation change at
buses 15 and 2 in order to bring about a reduction in line flow in the
branch between buses 14 and 16. The table shows a comparison of
. the neural network output with a fast decoupled load flow output.

Table 6 shows the effect of capacitor switching at buses 4 and
8 separately, and also when they are switched on simultancously.
Voltages corrections are observed in buses 3, 4, 8 and 9. Once again,
comparisons are shown with the output from a fast decoupled load
flow.

Table 1. Results from the ANN with non-linear feedback dafter two

iterations.
Type Voltage Power generated

P.U] [deg] MW]  [MVAR]
BUS- 1 slack 1.00000 0.0000 194.31 51.59
BUS- 2 |M-cont  1.00000 -0.0627 192.00 25.88
BUS- 3 load 0.95868 0.5812 0.00 0.00
BUS- 4  load 0.97035 -1.2976 0.00 0.00
BUS- 5 load 0.98903 -1:4075 0.00 0.00
BUS- 6 load 1.00951 29111 0.00 0.00
BUS- 7 |-cont  0.96000 1.4201 300.00 35.76
BUS- 8 load 0.95199 -1.3848 0.00 0.00
BUS- 9 load 0.96985 0.3613 0.00 0.00
BUS- 10  load 0.99652 -0.8065 0.00 0.00
BUS- 11 load 0.98731 3.8174 0.00 0.00
BUS- 12 loud 0.98486 45582 0.00 0.00
BUS- 13 -cont  0.99000 7.1105 591.00 20.08
BUS- 14 -cont  1.00000 4.9288 0.00 88.54
BUS- 15 -cont  1.01000 8.6599 215.00 482
BUS- 16 -cont  1.01000 8.4001 155.00 100.26
BUS- 17 load 1.01562 10.3777 0.00 0.00
BUS-18 |v-comt  1.01500 10.9673 387.89 -90.48
BUS- 19  load 1.00419 8.2201 0.00 0.00
BUS-20  load 1.00635 9.2323 0.00 0.00
BUS- 21 -comt  1.02500 11.4018 386.42 165.48
BUS- 22 -cont  1.04500 14,1829 296.09 81.30
BUS- 23 -cont  1.01000 10.2304 660.00 75.71
BUS- 24  load 1.00386 5.5917 0.00 0.00

Table 2. Results From the Fast-Decoupled Power Flow
Type Voltage Power generated

[P.U] (deg] MW] [MVAR]
BUS- 1 slack 1.00000 0.0000 166.76 57.24
BUS- 2 M-cont  1.00000 -0.0173 192,00 25.81
BUS- 3  load 0.95883 0.9976 0.00 0.00
BUS- 4 load '0.97041 -1.0363 0.00 0.00
BUS- 5§  load 0.98914 -1.2155 0.00 0.00
BUS- 6 load 1.00972 -2.6025 0.00 0.00
BUS- 7 |-cont  0.96000 1.8815 300.00 35.12
BUS- 8  load 0.95207 -0.9556 0.00 0.00
BUS- 9 load 0.96997 0.7806 0.00 0.00
BUS- 10 load 0.99671 -0.4394 0.00 0.00
BUS- 11 load 0.98721 43018 0.00 0.00
BUS- 12 load 0.98477 5.0025 0.00 0.00
BUS- 13 -cont  0.99000 7.5685 591.00 20.52
BUS- 14 -cont  1.00000 5.4819 0.00 88.65
BUS- 15 -cont  1.01000 9.2781 215.00 -6.27
BUS- 16 -cont  1.01000 8.9984 155.00 97.81
BUS- 17 load 1.01561 10.9951 0.00 0.00
BUS-18 M-comt  1.01500 11.5735 387.89 -93.03
BUS- 19  load 1.00420 8.7829 0.00 0.00
BUS- 20  load 1.00635 9.7558 0.00 0.00
BUS- 21 -cont 102500 11.9861 386.42 163.28
BUS- 22 -cont  1.04500 14.7520 296.09 81.04
BUS- 23 -cont  1.01000 10.7158 660.00 74.61
BUS- 24  load 1.00369 6.1056 0.00 0.00

Table 3. Branch Overioad Relief by Generators

Load Generation Line Avg. Line flow Avg, Line flow
Scenario Change (Fast Decoupled) (Neural Network)

I None 14-16 (248.64, 0.8) (248.15, 6.08)

I  Busi5:-25MW  14-16 (239.52, 4.97) (243.61, 5.50)

Bus 2; +25MW

Table 4. Voltage Correction by Capacitor Switching

Load Capacitor Bus Voltage Bus Voltage
Scenario Switching (Fast Decoupled) (Neural Network)

Bus-3: 0.93036 Bus-3: 0.930213

I None Bus-4: 0.95037 Bus-4: 0.950412

Bus-8: 0.92653 Bus-8: 0.926623

Bus-9: 0.94716 Bus-9: 0.947233

Bus-3: 093132 Bus-3: 0.931031

I Bus 4: 15 MVAR Bus4: 0.96013 Bus-4: 0.960276

Bus-8: 0.92719 Bus-8: 0.927071

Bus-9: 0.94972 Bus-9: 0.949570

Bus-3: 0.93172 Bus-3: 0.932086

I Bus 8: 45 MYAR Bus-4: 0.95237 Bus-4: 0.952415

Bus-8: 0.94342 Bus-8: 0.943528

Bus-9: 0.95072 Bus-9: 0.951071

Bus-3: 0.93277 Bus-3: 0.933454

I Bus 4: 15 MVAR Bus-4: 0.96216 Bus-4: 0.962550

Bus 8: 45 MVAR Bus-8: 0.94410 Bus-8: 0.944533

Bus-9: 0.95329 Bus-9: 0.953632

5. AN EXPERT SYSTEM FOR CORRECTIVE CONTROL

The preceding section discussed an artificial neural network
that can be effectively used for developing corrective control
strategies. An alternate approach that can be utilized for fast on-line
implementation of corrective control, is by using an expert system.
This section describes the issues behind the development of a rule-
based expert system which can be used in combination with linear
network sensitivities for recommending emergency and preventive
control actions for both voltage and line flow corrections.

5.1 The Knowledge Base

The knowledge base for the expert system was determined by
induction from results of off-line studies of the power system. The
system behavior due to changes in parameters were studied
extensively using the power flow technique in order to formulate most
of the rules. Rule sets were developed for the following functions:

(i) diagnosis
- voltage magnitude deviations
- branch overloads
correcting low voltage
correcting high voltage
generating list of suitable control candidate for voltage control.
recommending control for voltage correction
initiating branch flow control
locating control component for branch flow control
screening for partial control
recommending controls for branch overload relief,

(ii)
(iii)
(iv)

(v)
(vi)
(vi)
(vit)

(viii)

The expert system has been developed on a "80486-based"
IBM-PC using Prolog Development Center's PDC-PROLOG. The
latter is based on the PROLOG language, a widely used tool in
artificial intelligence applications. The power system network simula-
tions for determining sensitivities are also done on the PC. A graphical
front-end serves as the man-machine interface.



5.2 Network Sensitivities

The goal of the expert system is to expeditiously remediate
voltage and branch overload problems in real power systems.
Network sensitivities of voltage magnitudes and line flows to different
control devices play important roles in the completion of the strategy.
These sensitivities work in the same manner in terms of functionality,
as the heuristics of an experienced operator. An important question
when dealing with power system security is speed. Real time
solutions are critical. In a very large power system, trying to solve a
problem at one bus by systematically checking every control device
would certainly be a waste of time. In this system the sensitivity
matrices act as natural filters for selecting only those sensitivities
which will have the greatest effect. When looking at a system one
should realize that a change at one control element will have more
effect on the bus to which it is directly connected, and little or no
effect on buses farther down. The expert system is set up so as to
disregard any control components with small effects on the controlled
quantities.

The sensitivity analysis finds a relationship between a
controlling quantity, such as the MVars injected by a capacitor, and a
controlled quantity such as the corresponding voltage at a particular
bus. For voltage control Eq.(1) is used to calculate the sensitivities of
voltages at buses with respect to reactive power generated or
consumed at a bus. Repeated power flow solutions using the fast-
decoupled method yield an average sensitivity which is calculated as:

\4
sji=ii 1)
AQgi

where
Sji = Sensitivity at the j bus with respect to a change in the control
element at bus i.

A|V{ = Change in voltage magnitude at bus j
AQgi = The change in reactive power generated at bus i.

Capacitors, reactors, synchronous condensers and tap
transformers are all control elements which when changed cause a
change in the amount of reactive power generated and thus a change in
voltage. This relationship allows for a simple replacement of the
change in reactive power for a change in the given control element.
Similar sensitivities can be developed for all control elements in the
network. The ratio to be calculated is always the change in the
controlled (dependent) quantity to the respective change in the
controlling (independent) quantity. Sensitivity matrices can be formed
for each control element. One of such matrices is shown in Fig. 7 for
static capacitors placed on three buses in the IEEE 24-bus RTS.
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Fig.7. A sensitivity marrix used for formulating control strategies

In the figure, circles show a high degree of correlation between the
capacitor and voltages at load buses. The choice of a capacitor for
correcting low voltages in the system will therefore be governed by
the number of these circles associated with the element such that
maximum benefit can be utilized by the least amount of control.

Table 5 shows the sensitivities of a partial set of elements to
some of the control devices in the [EEE 24-bus system, under the two
scenarios of (i) pre-contingency state or base case (to be used in
emergency control strategy) and (ii) post-contingency state (to be used
for preventive control). In the tables, two specific outages are shown.

o

Table Sa. Sensitivities for the Generator at Bus 16

Outage Outage

Line Base-Case (14 - 16) as - 29
Bus 1-Bus 2 -0.40161  -0.36629 0.42347
Bus 1-Bus 3 0.18767 0.28298 -0.14992
Bus 15-Bus 16 -0.23097 0.30161 0.00000
Bus 16-Bus 17 -0.05411  -0.07072 0.00000
Bus 20-Bus 23 -0.16363  -0.30871 -0.22597

Table 5b. Sensitivities for the Phase Shifter at Bus 9 - Bus 11

Qutage Outage

Line Base-Case (3 - 29) (11 - 14)
Bus 1-Bus 3 0.162500 -0.725002 0.406250
Bus 3-Bus 9 -2.093750 0.743771 -1.537499
Bus 9-Bus 11  9.524994  8.337498 8.612499
Bus 11-Bus 13 3.768711  3.500042 4.906158
Bus15-Bus21 -0.181255  0.00000 -0.124989

5.3 Formulating the Rules

The knowledge base consisting of the rules searches for the
"best" control measure according to a pre-set criteria. In formulating
the rules a number of criteria were strictly adhered to. Some of the
criteria for branch overload relief are described below:

*  Lesser overloaded circuits are allowed to increase their loading if

}g permits the decrease of the loading of other heavily overloaded
ines.

* A control measure is optimal if it can correct the highest number
of violations compared to others.

+  For generator real power control, the most economic solution is
desirable.

* Load curtailment wiil be the last control strategy selected when
all possible controls have been exhausted.

+ For line switching, select the line with the heaviest overload;
however, switching of this line should not create more overloads
than in the original case.

* Actual overloaded conditions have higher priority for elimination
than in the contingency case.

*+  When only the contingency overloaded conditions exist, the
generation shift is determined such that no additional overloads
will result.

A number of important rules for solving the voltage violation problem
are shown below:

Rules for diagnosis

If voltage magnitudes at some buses are outside the set limits, then
there are voltage violations present in the system.

If voltage violations are present in the system, then find buses with
violations in order of largest voltage violation to smailest.

Rules for correcting low voltage

If voltage violation is in the negative direction (i.e. voltage is below
minimum), then

~find the capacitors with available adjustments in that direction.

-If there are no capacitors that will solve the voltage violation problem,
find all transformer tap changers with available tap ratios.

- If there are no capacitors or transformer tap changers that will solve

the voltage violation problem, find the available synchronous
condensers.



Rules for correcting high voltage

If voltage violation is in the positive direction (i.e. voltage exceeds the
maximum), then

- find the reactors with available adjustments.

-If there are no reactors that will solve the voltage violation problem,
find the available transformer tap changers.

-If there are no reactors or transformer tap changers that will solve the
voltage problem, find the available synchronous condensers.

Rules for finding suitable control candidate

If there is an available control component, then

- find the control element to which the affected bus has the highest
sensitivity (best candidate) and find the amount of change required to
bring the voltage violation within limits; (full comrection).

- if the change desired is not fully available, then apply the amount
possible. (partial correction).

- If a control element creates more voltage violations than were
originally in the system, then find a control element corresponding to
the next highest sensitivity (next best candidate) and find the amount
of change required to bring the voltage violation within limits.

Rule for recommending control
If the newly found control component, value does not create more
voltage violations than were originally in the system, then assert the
new control component value into the database and find the new
voltage magnitudes for all load buses.

Some rules for relieving line overload problems are shown
below:

Rules for initiating flow control

If voltage violations are present in the system, then first initiate voltage
correction strategy and then return to the line relief strategy.

(The voltage correction scheme requires changes in reactive power
flows and hence will likely have an effect on the line flows)

If line flow violations are present in the system, then list lines with
violations in order of largest line overioads to smallest.

Rules for locating control component
If there are generators available with proper adjustments, then find
those generators with the available adjustments.

If there are no generators with available adjustments, then find the
phase shifters with available adjustments.

Rules for screening

If there is an available control component, then

- find the control element to which the overloaded line has the highest
sensitivity and find the amount of change required to relieve the
overload (full correction).

- if the change desired is not fully available, then apply the amount
possible (partial correction).

Rule for recommending control
If the newly found control component value does not create more line
overloads than were originally present in the system, then assert the
new control component value into the database and find the new line
flow values for all transmission lines.

Using the Sensitiviti Recalculate Network Conditi

The sensitivity factors are useful in fast identification by the
expert system, of the control parameters available for corrective
measures during security violations. A second useful aspect of the
sensitivity analysis can be derived in the following scheme. Once the
recommendations from the expert system are implemented in the
system, it becomes a necessity to recalculate the voltages at buses and
the branch flows. An AC power flow program is ideal for
accomplishing the latter. However, speed is of utmost concern in such
situations as repeated solutions will be required. Therefore, a reverse
calculation using sensitivities gives acceptably accurate figures for
these parameters. The following generai equations give an indication
of the nature of these calculations:

Sji* AQgi=AlV] @
[Vinewd = [Vjord + AV} 3)

5.4 Results from the Expert System

Table 6 shows results of using the expert system for voltage
correction on the lightly-loaded system. The minimum and maximum
voltage magnitudes at all buses except the voltage-controlled buses
were assumed to be respectively 0.95 per unit (p.u) and 1.05 p.u. The
table contains the original voltage magnitudes as the expert system
sees it. These values are obtained from a full ac power flow. The table
also contains the voltage magnitudes after the recommendations from
the expert system are implemented. Each adjustment requires a full
"pass” over the relevant rules. Therefore multiple passes may be
required for correction of all voltage problems in the system.

There were three serious under-voltage problems at Bus-3,
Bus-4, Bus-8 and Bus-9 and a few other smalier problems.
Following are the ES recommendations for this test case:
Pass #1: Adjust the capacitor at Bus-4 from 0 to 100 MVars.
Pass #2: Adjust the capacitor at Bus-8 from 0 to 100 MVar.
Pass #3: Adjust the tap on the transformer between Bus-3 and Bus-
24 from 0.95 to 1.05.

Upon completion of the voltage magnitude corrections, the line
flows were adjusted to account for changes in bus voltages as
recommended by the the expert system. A separate program written in
"C" recalculates the values for the adjusted reactive power generations
at voltage-controlled buses and real and reactive power flows in all
lines. Flow violations existed on the line between Bus-14 and Bus-16,
and on the line between Bus-16 and Bus-17. Table 7 shows some
important line flows before and after the expert system was tested on
this system for relieving branch overloads. The expert system
suggested the following:

» Change generator output at Bus-18 from 388 MW to 293 MW

(Relieves overload on line from Bus-16 to Bus-17).

+ Change generator output at Bus-15 from 215 MW to 66 MW.

(Relieves overload on line from Bus-14 to Bus-16).

The final line flows are ali below their line rating after the expert
system recommendations were incorporated.

Table 6. Voltage Control by the Expert System

Bus Orig. V (pu) Pass 1 Pass 2 Pass 3
Bus 3 0.91591 0.92371 0.92741 0.972252
Bus 4 0.93048 0.99858 1.00338 1.00962
Bus 6 0.94898 0.95188 0.095888 0.960615
Bus 8 0.90993 0.91453 0.095463 0.957575
Bus 9 0.92636 0.94436 0.95376 0.963812
Bus 10 0.94609 0.94959 0.095959 0.960332
Expert Adjust Adjust Adjust tap
System capacitor capacitor transformer
Recommendations: atbus 4 atbus 8 between
from O to from 0 to busses 3
100 MVar 100 MVar and from
.95 to 1.05




Table 7. Branch Flow Control by the Expert System

Start End Rating Original Pass 1 Pass 2

(MVA) Flow (MVA) (MVA) (MVA)
Bus1 Bus2 140 17.60 50.91 108.11
Bus1 Bus3 140 18.73 21.26 57.42
Busl Bus$ 140 65.91 89.42 128.54
Bus2 Bus4 140 3091 49.33 80.29
Bus2 Bus6 140 47.27 63.20 88.67
Bus3 Bus24 400 203.41 176.57 130.82
Bus6 Busl10 140 120.86 106.52  85.11
Bus 10 Bus 1l 400 194.99 172.44 136.76
Bus 10 Busi2 400 221.31 203.68 175.68
Bus 11 Bus14 240 11.75 82.86 51.81
Bus 13 Bus23 240 130.90 118.31 98.65
Bus 14 Busi6 240 319.92 285.24  231.08
Bus 15 Bus24 240 228.45 202.53 159.53
Bus 16 Bus 17 240 276.20 227.52  208.48
Bus 17 Bus 18 240 141.55 93.07 76.67
Bus 19 Bus20 240 88.31 102.81 12545
Expert Pass 1: Reduce generation at Bus-18 by 95 MW,
System Pass 2: Reduce generation at Bus-15 by 149 MW,
Recommends:

6. CONCLUSIONS

Artificial neural networks and expert systems have been used
in a variety of power system applications. Problem diagnosis through
feature or pattern recognition is a significant strength of trained
ANNSs. Expert systems can capture the expertise and experience of
human operators to yield control measures under complex situations,
This paper has provided an investigative look at the capabilities of
ANNs and expert systems for recommending emergency and
preventive measures. Experimentai results prove that both paradigms
are suitable for on-line use. Although, their performance on larger
power systems cannot be extrapolated from the results presented in the
paper, it is expected that the same configuration of the ANN will
perform satisfactorily. However, the training process will require
larger data sets and therefore longer time. For these large power
networks, the expert system will require more efficient pruning
methods to reduce the search space and thereby eliminate unnecessary
delays in obtaining the solution.
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APPENDIX
Table Al. Power flow data for the IEEE-24 bus test system
Type Voltage Power generated Power demand
[P.U] [deg] [MW] [MVAR] [MW] [MVAR]

BUS- 1 slack 1.0 00 18591 97.28 115.0 320
BUS- 2 M-cont 1.0 00 1920 -1491 117.0 35.0
BUS- 3 load 1.0 00 0.0 0.0 208.0 38.0
BUS- 4 load 10 00 0.0 0.0 90.0 230
BUS- 5 load 1.0 00 0.0 0.0 85.0 220
BUS- 6 load 10 00 0.0 00 1510 350
BUS- 7 [M-cont 096 0.0 300.0 00 1550 45.0
BUS- 8 load 1.0 00 0.0 0.0 202.0 45.0
BUS- 9 load 10 00 0.0 00 2180 520
BUS- 10 load 1.0 00 0.0 00 2500 65.0
BUS- 11 load 10 00 0.0 0.0 0.0 0.0
BUS- 12 load 10 00 0.0 0.0 0.0 0.0
BUS- 13 -cont 099 0.0 591.0 0.0 305.0 74.0
BUS- 14 |V]-cont 10 0.0 0.0 00 2150 49.0
BUS- 15 |M-cont 1.010 0.0 215.0 00 3490 78.0
BUS- 16 {v-cont 1.010 0.0 155.0 00 1280 38.0
BUS- 17 load 10 00 0.0 0.0 0.0 0.0
BUS- 18 |-cont 1015 0.0  387.89 00 3800 79.0
BUS- 19 load 10 00 0.0 0.0 2120 53.0
BUS- 20 load 1.0 00 0.0 00 1450 36.0
BUS- 21 -cont 1.025 0.0 386.42 0.0 0.0 0.0
BUS- 22 |v-cont 1.045 0.0  296.09 0.0 0.0 0.0
BUS- 23 -cont 1.01 00 660.0 0.0 0.0 0.0
BUS- 24 load 1.0 00 0.0 0.0 0.0 0.0
LINE DATA

From To R X B MVA Rat.
1 BUS-1 BUS-2 0026 0139 23055 1400
2 BUS- BUS-3 0546 2112 02860 1400
3 BUS1 BUS-S 0218 0845 01145 1400
4  BUS:2 BUS4 0328 1267 01715 1400
S  BUS2 BUS-6 0497 1920 02600 1400
6  BUS3 BUS-9 0308  .1190 01610 1400
8  BUS4 BUS-9 0268  .1037  .01405 1400
9  BUS-S BUS-10 0228 0883 01195 1400
10 BUS-6 BUS-10 .0139 0605  1.2295 140.0
11 BUS-7 BUS-8 0159 0614 00830 1400
12 BUS8 BUS-9 0427 1651 02235 1400
13 BUS8 BUS-10 0427 1651 02235 140.0
18 BUS-11 BUS-13 0061 0476  .0499S 2400
19 BUS-11  BUS-14 0054 0418 04395 2400
20 BUS-12  BUS-13 0061 0476 04995 2400
21  BUS-12  BUS-23 0124 0966 .10150 2400
22 BUS13  BUS-23 0111 0865 .09090 2400
23  BUS-14  BUS-16 0050  .0389  .04090  240.0
24  BUS-15  BUS-16 0022 .0173 01820 2400
25 BUS-15  BUS-21 0063  .0490 05150 2400
26 BUS-15.  BUS-21 0063  .0490 05150 2400
27 BUS15  BUS-4 0067  .0519  .05455  240.0
28 BUS-16  BUS-17 0033 0259 02725 2400
29 BUS-16  BUS-19 0030 023t 01155 2400
30 BUS-17  BUS-18 0018 0144 01515 2400
31 BUS-17  BUS-22 0135 1053 01106  240.0
32 BUS-18  BUS-2t 0033 0259 02725 2400
33  BUS-18  BUS-21 0033 0259 .02725 2400
34 BUS-19  BUS-20 0051 0396 .04165 2400
35  BUS-19  BUS-20 0051 L0396 .04165 2400
36 BUS-20  BUS-23 0028 0216 .02275 2400
37 BUS-20 BUS-23 0028 0216 02275 2400
33 BUS-21  BUS-2 0087  .0678 07120 2400
TRANSFORMER DATA

From To Tap Phase X MVA Rat.
7 BUS-3 BUS-24 0.95 0.00000 0839  400.0
14  BUS9 BUS-11  1.00 0.00000 0839  400.0
1S BUS9 BUS-12 1.00 0.00000 0839  400.0
16 BUS-10 BUS-11  1.00 0.00000 0839  400.0
17 BUS-10 BUS-12  1.00 0.00000 0839 4000



