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Absh.nct-A simple electrical network is used to represent the length, pm 
five differential equations describing basic phenomena in one- junction depth, pm 
dimensional semiconductor devices. Both standard and integrated hole and electron mobilities, cmz/V . s 
approaches for solving transport equations are developed. Also, the electrostatic potential, V 
an electrical network equivalent for the nonlinear Poisson equa- 
tion was derived. It allows students to better understand the the hole and electron minority-carrier life- 
physical phenomena and the process of computer simulation of times 
such semiconductor devices. E,  the dielectric constant for semiconductor, 11.8 

for Si 
LIST OF SYMBOLS €0 permittivity of free space, 8.854-1O-l4 F/cm 

Ax 
w 
p p  and p n  
‘$ 
Tp and 7, 

A cross-sectional area, cm2 
C capacitance, F 
Dp and D, hole and electron diffusion constants 
E electric field, V/cm 
EMAX maximum electric field 
Ip and I, the hole and electron currents 
Jp and J, the hole and electron current densities 
k Boltzman’s constant, 1.38 1 J/K = 

8.62. eV/K 
kT thermal energy, eV 
N o  and N A  the concentrations of donors and acceptors, 

N the ionized impurity concentration (N = 

ni the intrinsic carrier concentration, 1.5 . 10” 
cmP3 for Si at 300 K 

nt the trap concentration at or near the center of 
the forbidden gap 

p and n densities of holes and electrons 
p and 5i “average values” of hole and electron con- 

centrations 
Q charge, C 
9 the electron charge, 1.6 . lo-’’ C 
R the hole-electron recombination rate, cm-3 

S-1 

T absolute temperature, K 
t time, s 
At time increment, s 
VT 
X distance, pm 
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I. INTRODUCTION 

HE learning process for engineering students is often T enhanced by the use of models. For example, they 
learn to understand physics with simple models involving 
point charges, solid electrons (Bohr model), and analogies to 
phenomena they already understand. 

Electrical engineering students approaching the topics of 
semiconductor device analysis already have an understanding 
of electric circuits, but usually lack knowledge about electrical 
transport phenomena and solid-state physics. Therefore, it is 
useful to present semiconductor device operation in terms of 
circuit models. This paper shows that a simple electrical net- 
work can be used to model a one-dimensional semiconductor 
device. 

The five differential equations describing basic phenomena 
in semiconductor devices are relatively difficult for students 
to comprehend. This paper shows an approach in which a 
semiconductor device is represented as a simple electrical 
network depicting these equations in one-dimension. It allows 
students to better understand the phenomena and the process 
of computer simulation of semiconductor devices. 

Most of the existing computer simulation programs for 
semiconductor devices use various combinations of simpli- 
fying assumptions, e.g., space-charge neutrality, depletion ap- 
proximation, neglecting recombination, dominance of one type 
of carriers, neglecting fast transitions that are shorter than 
relaxation times, etc. However, in many cases such as for 
small geometry high-speed devices for VLSI applications, 
these assumptions are not valid and a more general and 
versatile approach is needed. The program that results from 
the approach presented here allows for the general analysis of 
a semiconductor structure without knowledge of any internal 
conditions. The required input data consists of the impurity 
concentration distribution as a function of distance and the 
applied terminal voltages. The simulation includes all effects 
and provides detailed information about the static and transient 
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behavior of semiconductor devices such as the potential, 
electric field, charge, hole and electron concentrations, hole 
and electron currents, recombination rate, etc. Only then 
can the userhtudent understand what kind of simplifying 
assumptions can be used and under what conditions. 

The paper proceeds as follows. First, a representation of 
the differential equations by an electrical network will be 
given followed by a discussion of an improved approach to 
the differential transport equations. Next, an electrical repre- 
sentation of the nonlinear Poisson equation for the Gummel 
iterative procedure will be described. The paper includes 
various examples. 

11. REPRESENTATION OF SEMICONDUCTOR DIFFERENTIAL 
EQUATIONS BY AN ELECTRICAL NETWORK 

Equations (1)-(6) are basic differential equations describing 
device behavior for the one-dimensional case as a function of 
doping concentrations, carrier parameters, and applied volt- 
ages. 

Transport Equations 

where J, and J,  are the hole and electron current densities, 
q the electron charge, Dp and D, hole and electron diffusion 
constants, p and n densities of holes and electrons, p, and 
p, hole and electron mobilities, and $ is the electrostatic 
potential. 

Continuity Equations 

R 
!e----- 1 dJp 
dt 9 d x  

- 

R dn - 1 dJ ,  
dt q d x  
- - 

(3) 

(4) 

where t is time, and R is the hole-electron recombination rate 
given by: 

(5) 
np - nz R =  

~ p ( n  + nt) + Tn(P + nt) 

where ni is the intrinsic semiconductor carrier concentration, 
T, and T, are the hole and electron minority-carrier lifetimes, 
and nt is the trap concentration at or near the center of the 
forbidden gap. 

Poisson Equation 

8.11, 4 - - (ND - NA + p - n )  - 
dx2 E,&, 

where E,E, is the dielectric constant, and ND and NA are the 
concentrations of donors and acceptors, respectively. 

Node 1 

P I  
“ 1  

$1  

I A X  A A X - ]  

L A X 2  
( b) 

Fig. 1. Physical models of a semiconductor of length Ax and cross-section 
A. (a) Defining volume between nodes 1 and 2. (b) Defining volume between 
planes M and N positioned at X M  and IN, respectively. 

The five unknowns are the current densities (J,, J,), the 
carrier concentrations ( p ,  n ) ,  and the electrostatic potential 
($). All are functions of position x and time t as well as 
doping profiles (determined by fabrication), and the voltages 
V applied to the device. The quantities D,, D,, p p ,  p,, R, rp, 
and r, need not be constant and could be weak functions of 
other variables ( p ,  n, N, E ) .  The intrinsic carrier concentration 
ni is determined by the temperature and energy gap. 

The next step will be to develop an electrical network whose 
performance accurately predicts the performance of the desired 
unknowns. This could be done at discrete points in the one- 
dimensional model of the semiconductor. The discretization is 
made using the standard finite-difference technique. 

A. Transport Equations 

Consider a small section of a semiconductor of length Ax 
and cross-section A as in Fig. l(a). Modifying (1) and (2),  in 
view of Fig. l(a), gives: 

where Ip and I, are the hole and electron currents, and p 
and 5i are the “average values” of the hole and electron 
concentrations. In the simplest case, p = 0.5(pl + p z )  and 
T i  = 0.5(nl + n2). 
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Equations (7) and (8) can be rewritten as: 

giving components of equivalent electrical networks with 
current sources I; and I: representing diffusion currents, and 
conductances Gp and G, simulating the effect of drift. Both 
currents and conductances are functions of carrier concentra- 
tions, and can be given as 

B. Continuity Equations 
Equations (3) and (4) can be rearranged based on the 

physical model of Fig. l(b). For equal values of A x ,  one 
obtains: 

The region between planes “ M  and “N” positioned at X M  

and X N ,  respectively, is considered a volume (section) C. The 
rectangular solid A x  long with area A can collect mobile 
carriers. In addition, the solid can be a source of current IR 
due to generation-recombination mechanisms. Equations (13) 
and (14) can then be rewritten as: 

dn 1 - = -(In2 - I,1 - IR)  
d t  4< 

where < and IR are given by: 

< =  A x A  
IR = q<R. 

It is important to note that (15) and (16) must be used for 
solving transient or time-varying problems. They show that the 
rate of change of the carrier concentrations in an infinitesimal 
volume (C = A x A )  are linearly related to the sum of the 
current-generated IR in the volume C, and to the net current 
entering the volume with appropriate algebraic sign. 

C. Poisson Equations 

Equation (6) can also be rearranged to provide an equivalent 
network representation which can be combined with the pre- 
ceding developments for a complete representation. Integrating 
(6) for the physical structure of Fig. l(b) gives: 

where N is the ionized impurity concentration ( N  = N o  - 
NA). AQ represents the amount of uncompensated or free 
charge in section MN and is given by: 

X N  

AQ = qA 1 ( p  - n + N ) d x .  (20) 
X M  

For small A x ,  (19) can also be written as: 

Thus, in an electrical analog network representation, the 
Poisson equation can be represented as a capacitance C (of 
area A,  plate spacing A x ,  and dielectric constant E,&,) and 
a “charge source” AQ representing the unbalanced charge at 
the node. Since each infinitesimal section connects between 
nodes, the capacitance C has to be placed between them. The 
free charge is unique to each section so it is connected to the 
common or “ground.” 

Fig. 2(a) presents the physical structure, and Fig. 2(b) de- 
picts an equivalent electrical network representation which will 
treat the transport phenomena equations (l), (2) and space 
charge effects predicted by the Poisson equation (6). The 
time-varying effects associated with the continuity equations 
will be included later. These two figures provide physical 
insight into what is happening in the slice of semiconductor 
material. The currents I; and 1; are diffusion currents caused 
by carrier concentration gradients, the conductances Gp and 
G, are related to the field-induced drift of the carriers, the 
capacitance C is simply the slice capacitance, and AQ is 
the value of the steady-state free charge stored in that slice. 
The values of the current generators, conductances, and the 
stored charge are all functions of carrier concentrations known 
from the calculations at the previous time step. Such a linear 
network can be easily solved, e.g., by one of many circuit 
analysis programs. 

To obtain the transient solution, the RC network for a 
specified time step A t  is transformed into a network containing 
only resistors and current sources by replacing all capacitances 
with resistancesJconductances and current sources, and fixed 
charges with current sources. Note the fundamental similar- 
ity with switched-capacitor modeling techniques. This rather 
standard approach is illustrated in Fig. 2(c). This transformed 
form lends itself to numerical solutions. 

To seek a solution of the semiconductor phenomena, based 
on the equivalent electrical network, conceptually amounts to 
the following steps if an appropriate computer program is 
available. 

1) Choose values of A x  based on physical understanding; 
this will determine the number of nodes needed to solve the 
problem. 

2) Choose values of At based on physical understanding; 
this will determine how long the program will have to run. 

3) Introduce values for diffusion lifetime, and mobility 
parameters which can be functions of the unknowns. 

4) Introduce initial conditions; usually this consists of 
applying an external voltage so $ is fixed at two points, say at 
x = 0 and x = (m - l )Ax,  where m is the number of nodes. 
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Fig. 2. (a) Physical model of a three-node-semiconductor slab. (b) Equiva- 
lent network representation of (l), (2), and (6). (c) Transformation of circuit 
elements to account for transient phenomena. I p 1 / 2  = -qAD,Ap/Ax, 
I,,,/, = -q..lDnAn/Ax, G p l p  = qAppp/Ax, G n l p  = qApL,n/Ax, 
C = A E ~ E " / A X ,  AQ = qA(p - n + N ) A x .  

It is possible to start with all unknowns equal to zero but 
intelligent estimates of the carrier concentration values as a 
function of x and t reduce computer run time. To obtain a 
steady-state solution, the computer is programmed to repeat 
runs using the solutions of the preceding run as the initial 
conditions for the next run. A steady-state solution is assumed 
complete when there is an acceptably small change in the 
solutions indicating convergence. In all cases, the results must 
be evaluated to determine acceptability based on physical 
insight. During the first run, the computer solves for the node 
potentials and currents based on the estimated values of carrier 
concentrations. The resulting hole and electron node currents 
are unbalanced but known. They can be used in (17) and 

(18) along with an appropriate generation current to calculate 
dpldt and dnldt at each node. Values for A p  and An can be 
calculated as shown below. 

The new values of carrier concentrations are obtained by 
correcting the values from the previous time step taking 
the calculated Ap and A n  from (24) and (25). The carrier 
concentrations change with time as the slice of material acts 
as a sink on a source of carriers depending on the effect of 
external applied voltages. The slice volume C acts as the sink 
or source during an infinitesimal time period At. At the end 
of this time period, the slice volume free charge changes by 
an amount determined by the change in carrier concentrations 
at the node. Then, the network parameter values (which are 
functions of p and n )  are calculated, and the computing cycle 
is repeated. 

Key issues include how low the values of p and n should 
continue to be corrected and what value of At should be 
chosen at each iteration. It is obvious that, for very small 
changes of n and p per run, convergence can be assured. At 
the same time, the number of iterations to obtain a steady-state 
solution can be very large. Based on experience, fast solutions 
result when the incremental time step is slightly smaller than 
the time constant 7 of each of the calculated nodes. 

The steady-state solution for a reverse biased p-n junction 
is shown in Fig. 3(a)-3(d) where potential $, electric field E ,  
charge Q, hole p ,  and electron n distributions are shown for 
various biasing voltages V. When compared with analytical 
solutions resulting from a depletion approximation, a very 
good agreement is noted. For example, when plotting the 
thickness of depletion layers in the p- and n-type regions (WI 
and W2, respectively) and maximum electric field (Emax) as 
a function of bias voltage (Fig. 4), one can see an excellent 
correlation of results. 

111. INTEGRATED APPROACH TO TRANSPORT EQUATIONS 

It is known that the accuracy of solution for (1)-(4) and 
(6) is relatively poor when a simple discretization is used. 
Improved results can be obtained if the integrated form of 
these differential equations is used. This approach is known 
as the modified Gummel-Scharfetter method [2], [3]. In this 
section of the paper, a similar algorithm with the network 
approach will be presented. 

Two adjacent nodes with carrier concentration p l ,  n1 and 
pa ,  n2 are assumed to have a constant electric field E between 
them. This field causes a potential difference between the 
nodes A$ = -EAx,  where A$ = $2 - $1 and $1 

and $2 represent potentials at these two adjacent nodes. 
This difference impacts on the carrier concentrations in an 
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Fig. 3. Steady-state analysis of a reversed-biased p - n  junction. (a) Potential +; (b) Electric field E', (c) Q', and (d) holes p and electrons n distributions 
with bias voltage V as parameter changing from 0 to 10 V; p - n  junction parameters: built-in potential V,;. = 0.78 V, doping concentrations, lo" 
and 3 . 1 O I 6  cmP3. 

exponential manner. It can be shown (see the Appendix) that: where 

or 
P l  + P 2  + p2 - P 1  1 

pee  = ___ -- 
2 tanh(P) 2 . ,  

(32) 
where VT is the thermal voltage (VT = ICT/q), IC is the 
Boltzman's constant, T is the absolute temperature, and q is 2 2 tanh(P) 
the electron charge. 

n1 +n2 n2 - 1 2 1  1 neff = ~ - -- 

These equations can also be written in the form of where P = A+/2V, = - E A x / ~ V T .  
Equations (27) and (28) can also be rewritten in a form 

similar to (9) and (lo), leading to the same network repre- 
sentation as in Section 11. In particular, for small values of 

J p  = 9PpEPeff 
Jn = qpnEneff 

(27) 
(28) 
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junction 
= 0.7 8V !1 
Distance. um 

Fig. 4. Comparison of computed and analytically calculated (deple- 
tion approximation) parameters. Formulas used in the calculations: 
Ern,, = qATiWi/EsEo = Q N Z W ~ / E ~ E , ,  Wi = ! 2 ~ s ~ o / q N i ( 1  + NI/ 
Nz))' .~,  Wz = ~ E ~ E ~  qNz(1 + N2 /N1))'.', with NI = 1017 cmV3 
and N2 = 3 * 10" cm-[, Numerical values for W1 and W2 were obtained 
from the plot of electric field versus distance by intersecting extensions of the 
respective electric field plots with the horizontal (distance) axis. 

p (tanh(P) M p), (27) and (28) take the forms of (11) and 

To discuss (25) and (26), let us consider three simplified 
cases. 

a) Case 1: For p,tf = p l  = p2 = p and n,tf = n1 = n 2  = n 
when only drift currents exist. Equations (25) and (26) reduce 
to: 

(12). 

JP = W p P E  (33) 
Jn = q p n n E  (34) 

b) Case 2: When diffusion is the dominant mechanism, 
IEl << VT/AX. Then (25) and (26) will simplify to: 

(35) 

(36) 
n2 - n1 J ,  = qDn- 

Ax 
which are the typical diffusion equations. 

c) Case 3: When the electrical field is high and drift is a 
dominant mechanism, [El >> VT/AX. Then the results depend 
on the direction of electrical field. 

If A+ is positive: 

If A11, is negative: 

(37) 

(38) 

It should be stressed that the current calculations depend on 

-20 f 1 ,  
00----.--625 i? 

APPLIED V0LTAGE.V 

Fig. 5. Comparison of results of hole and electron current distribution of 
a reversed- biased p - n  junction at steady-state: integrated approach (thick 
lines) and of the standard finite-difference approach as described in Section I1 
(thin lines) with 41 mesh points as compared to 161 points as for examples 
shown in Section 11; a bias voltage of 5 V has been used. 

the direction is which the carriers are moving. The concentra- 
tion of either the left or right node is used, depending on the 
carrier and field direction to calculate current. This approach 
is known as the "down wind-up wind" approach of solution 
of partial differential equations. 

For moderate electrical fields, the effective values of the 
carrier concentrations are calculated from (31) and (32). Using 
the integrated form to calculate the currents, better accuracy 
can be obtained. At the same time, the section size could be 
bigger and thus the number of discrete points smaller. 

A reverse biased p - n  junction has been analyzed using this 
approach. Example results of steady-state hole and electron 
currents distributions are presented in Fig. 5. Using the inte- 
grated approach (thick lines), four times fewer mesh points (41 
points) have been used to obtain similar results as compared to 
the simplified (standard finite-difference) approach described 
in Section I1 (thin lines) where 161 points had to be used. It 
can be seen that the simplified approach introduces significant 
errors, while the integrated approach gives correct results even 
for the range of changes of 15 orders of magnitude. 

Iv. METHOD OF SOLUTION FOR POISSON EQUATION 
In order to be able to use the most common Gummel 

iterative procedure [1]-[3], the Poisson equation has to be 
written in a nonlinear form 

Q d211, - --(p - n + N )  
dx2 E,&, 

with 

11, = $0 + 611, (42) 

(43) 

(44) 

where S11, is the voltage increment from one iteration to the 
other, and $,, p,, and no are the values from the previous 
iterations. 
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8 [4] present results for a device which operates in a punch- 
through condition with space-charge control of currents. The 
structure of the device is simple with two n+ or p+ regions 
formed in p -  or n- substrate, respectively. Fig. 7(a)-(d) 
shows the results of a steady-state analysis for an nfp-n+ 
structure after punch-through with bias voltage changing from 
-0.5 to 5 V. Fig. 8(a) and (b) presents the results of a 
transient analysis for a p+n-p+ structure during switching 
from 2 to 10 V as a function of time in 30 ps increments. 
Observe the mechanism of carrier injection over the poten- 

% 9 3  

C' 

- - - 
Fig. 6. Network representation of (49). 

tial barrier, space-charge limited flow control, and very fast 
transients. After inserting (42)-(44) into (41), one obtains: 

Other effects can be easily implemented into the pro- 
gram (for example, carrier mobility as function of electrical 
field, carrier generation electrical field dependence, carrier 
generation by light, other recombination mechanisms, carrier 
scattering on impurities and lattice, etc.). All phenomena can 
also be temperature-dependent. 

d2$o d 2 ( W  4 =+r= & - p o - P o - N )  

(45) 
Q S$ + -(no+p,)- 

E&, VT 
where, in the discretized case (uniform mesh), 

-- 
VI. CONCLUSION 

An electrical network approach for an analysis of the 
behavior of semiconductor devices has been developed and 
demonstrated by a number of physical examples. Computer 
programs exist which may be employed by students to inves- 

(46) 
d 2 ( $ O )  - $01 + $03 - 2$02 

dx2 Ax2 

dx2 Ax2 (47) 

Substituting s$ = s$2, insetting (46) and (47) into (43)3 and 
multiplying it by -AxAE,E,, one obtains: 

d 2 ( W  - W l  + 643 - 2 w 2  -- 

VT 
+ -- 

Ax Ax 

. &)2 - AEsE, 6Ih3 = AAxq(n, - p ,  - N )  Ax 

($01 + $03 - 2$02) (48) -- 
Ax 

or 

-C~$I + ( 2 C  + C*)6$2 - C6$3 = Q (49) 

where 

tigate the transient and steady-state behavior of such devices 
based on the model developed. The models are sufficiently 
simple as to be run on personal computers. 

The usefulness of the approach that has been presented 
includes: 

1) aiding students to understand device phenomena based 
on models they know how to manipulate, 

2) aiding students to understand how a computer device 
simulator program is developed, and 

3) providing students and others with a useful device 
simulator program that will simulate device performance in the 
steady-state or transient mode without simplifying assumptions 
or approximations. It is limited to one dimension, but is 
considered instructive and useful for educational purposes as 
well as solving real simple-geometry structures. 

The algorithm is very simple and the programs devel- 
oped were implemented in FORTRAN on a VAX 11/780 
minicomputer and in Turbo-Pascal on IBM PC and com- 
patibles. In order to introduce various options in running 
the programs, elemental knowledge of one of these pro- 

Equation (49) corresponds to the network shown in Fig. 6. gramming languages 's required* Since the programs have 

One can notice that the nonlinear approach (Gummel 

matrix principal diagonal significantly dominant, and a simple 
iterative procedure can be used for solution. 

built-in plotting capabilities, visualization of processes and 

device under various excitation conditions is easy to obtain. 
Examples of such cases can include, e.g., observation of 
changes in the distribution of concentration of carriers injected 
to the base during the bipolar transistor turnoff; distribution 
of minority carrier concentration in the base-collector region 
of the bipolar transistor leaving saturation: building up the 
domain in the Gunn diode; or analyses of various analysis 
of different reaction times in a photodiode when radiation 
is absorbed in the depletion region or in the neutral regions 
near junction, to name only a few. This has a very significant 

results in large grounded capacitances. This makes the network dynamic changes Of transients Occurring in a semiconductor 

V. EXAMPLES 

Various semiconductor devices were analyzed. Fast results 
are possible for one-dimensional analysis and this allows 
students to understand the principles of operation of such 
specialized semiconductor devices as Camel, Gunn, and TRA- 
PA= diodes to name only a few. For example, Figs. 7 and 
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Fig. 7. Steady-state analysis of n+p-n+ punch-through structure with spacing between n+-regions L = 3 pm and background 
concentration of h'bc = 5 . l O I 3  cmP3 : (a) potential distribution, (b) electric field distribution, (c) space-charge distribution, 
and (d) minority carriers distribution. 

J p e x p  - = -qp  V - p e x p  (l) T d x  [ (&)I didactic effect in that visualization of phenomena are more 
easily comprehended by students than written formulas on the 
blackboard. performing integration 

APPENDIX 
DERIVATION OF (25) AND (26) 

Starting with (l), 

multiplying by e x p ( $ / V T )  

rearranging 

substituting 11, = - E x  

and, after some arrangements, one obtains 

JP  = QPpE 
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Fig. 8. Transient analysis of p + n - p +  punch-through structure with a 
spacing between p+-regions L = 6 pm: (a) minority carriers distribution, 
and (b) space-charge distribution. 

After substitution $2 = $ + A$/2 and $1 = 1c, - A$/2, the 
final formula (25) is as follows: 

In a similar way, (26) can be obtained. 
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