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ABSTRACT

The advantage of fast computation capability of an Artificial
Neural Network (ANN) is used to introduce an iterative scheme for
security assessment of power systems. Two related approaches are
shown which demonstratedly work satisfactorily. The idea of
feedback in a single-layer feedforward neural network is
experimented yielding higher accuracy. The ANN is trained by
using a set of data obtained from off-line analysis of the power
network. After training, an approximate solution for a given
condition may be found almost immediately. The approximate
solution obtained is judged adequate for assessing the security of the
power system. A case study is also presented for demonstrating the
:ligplicability of the approach.

eywords: Artificial neural network, training set, contingency,
projection algorithm.,

1. INTRODUCTION

Security assessment of power systems is a difficult problem
which, with traditional approaches requires enormous computational
effort. Contributing to the complexity of the task are: (i) the
constantly changing system demands and generations, and (ii) an
often inexhaustible list of contingencies that need to be evaluated in
real ume. Each contingency requires solving a large set of non-
linear equations in order to obtain information on potenual line
overloads or bus voltage magnitude deviations from their limits.
These non-linear equations are normatly solved by using any of the
widely acclaimed power flow solution techniques viz., the Gauss-
Seidel method, the Newton-Raphson method or in some cases, the
fast decoupled method. The Gauss-Seidel method has a relatively
simple algorithm but it requires many iterations and for some large
power systems, the method may not converge to the solution. The
Newton-Raphson method also requires an iterative solution of a
large set of non-linear equations but algorithm converges faster.
However, the method is memory-intensive even with application of
sparse matrix techniques. The fast-decoupled method 1s the most
efficient, however in some cases, only an approximate solution may
be found.

This paper presents results of experimentation with an Artificial
Neural Network (ANN) for security assessment of a power svstem.
The paper presents arguments toward the concept that the
conventional tedious approach to obtaining solutions of a power
network by using numerical methods may be avoided by using

neural computing. The ANN is trained by using a set of data

obtained from off-line analysis of the power network. After
training, an approximate solution for any given condition. may be

“found almost immediately. The approximate solution 15 accurate

enough for adequately assessing the security of the power system.
A case study is presented later in the paper.

The concept of applying ANN's to static and dynamic security
assessment is a relatively new concept. Several authors in the past
few years have investigated the suitability of applying this particular
branch of artificial intelligence in mitigating the problems of
traditional approaches to security evaluation in power systems [ 1-5].
These studies have brought into perspective several key issues
relating to the new art. In general, research interest in appiication of
neural networks in power systems operations and planning is on the
rise as evident from a recentlv concluded workshop (6].

2. POSSIBLE APPROACHES FOR NEURAL
COMPUTING

In static security assessment, one needs to investigate for a set of
real and reactive powers on buses, the condition of line flows
exceeding the maximum ratings and bus voltage deviations from
their lower and upper limits. In alternate terms, for a given vector of
bus powers, a vector of line flows and bus voltage magnitudes has
to be determined and evaluated. The most straightforward
explanation of such an approach is shown in Fig. 1.
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Figure 1. A possible approach for securirv assessment

The set of power flow equations is modeled by one layer of the
feedforward neural network as shown in Fig. 2.
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Fig.2 One layer neural nerwork

If powers at the buses are known, then by using the trained
neural network, approximate values of the bus voltages and line
powers can be found. Then, having the vector of line flows and the
vector of bus voltages, the security vector can be found by setting
appropriate thresholds for maximum line ratngs, and lower and
upper bounds for the voltage magnitudes. The term "security vector”
will be used in this paper in the context of branches overioaded and
buses having voitages outside the limits.

Another possible approach for security assessment is to use the
method shown in Fig. 3, where the ANN is used only to determine
the vector of bus voitages. Thereafter the vector of average line
currents [j; and the vector of complex line flows Sij may be
explicitly calculated using the following equations:
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and

§ij = (Vl - C’_,) fi,' )
where:

Vi - complex voltage at bus i.

\7,- - complex voltage at bus j.

Zj - series line impedance between buses i and J-

31 ij - half-line susceptance between buses i and j. -

fij - complex line current from bus i to bus j.

§ij - complex line flow from bus i to bus ]

Since the output vector shown in Fig. 1 contains both branch
data and bus data, the ANN used in the first approach will have a
larger number of neurons to train compared to the ANN used in the
second approach.
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Figure 3. An aiternate approach Jor security assessment

2.1 Contingency Analysis for Generator Failure

Predicting the effect of the failure of a generator is a relatively
easy task with the ANN. This is simulated by a simple change in
the input vector (the generated real and reactive powers on that bus
is forced to zero). As a resuit the voltage distributions under such a
contingency may be computed by the ANN. As a next step line
currents can be computed from Egs. 1 and 2. Having values of line
cuIrents, system security can be computed as a simple sum of the
cases where the parameter ranges are violated.

For proper operation. it is essential that bus voltages obtained
from the ANN are high in accuracy. The training method applied.
plays a key role in attaining the desired accuracy. For a given power
system, the ANN can be trained using, for exampie the back
propagation algorithm which is very slow and may require hundreds
or even thousands of iterations depending on the size of the system.
However. for the test system used for demonstration in the paper, 1t
was found that the projection algorithm based on the ieast squares
approximation technique was more efficient. Since an AN without
hidden layers is used. the projection algorithm proved to be very
stable and accurate.

In order 1o further increase accuracy of the solutions. a feedback
is applied to the feedforward ANN as shown in Fig. 4. A vector of
bus power for feedback, Syt is computed simply as a sum of line
flows Sy at each bus k. At the initial state, elements of the vector
of line power are zeros and hence the feedback vector is zero.
Therefore, in the first step, the input vector of bus powers Sy is
applied to the neural network and an approximate initial vector of
line powers Syp , is obtained. In the second step, the difference
between the input vector of bus powers Sy, and the feedback vector
Spe is input to the ANN., Hence. the neural network operates on the
difference (error) and the vector of line powers at the output is

corrected. Usually a few iterations are enough in order to obtain
convergence.
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Fig. 4. The feedforward ANN with feedback
2.2 Contingency Analysis for Line Failure

A more difficult task is to provide analysis in the case of line
failures. In general when a line fails, the power network topology
changes and results obtained from the previously trained ANN can
be misleading. For each possible line failure. the ANN should be
trained in order to obtain correct vaiues of bus voltages and line
flows for any given power distribution. This is a rather time-
consuming approach and therefore not considered to be pracucal.

In order to simulate a line failure,
algorithm is used. Instead of changing the svstem topology by
taking the line out of the system, two additional complex power
sources are introduced in relation to the failed line as shown in Fig.
5.

the following iterative
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Figure 5. Power compensation method used for simulating
line outages
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The two added power sources shown in the figure have the same
values as the line flows measured at each bus. but have opposite
direction relative to the outaged line flow. This is done in order to
initially obtain zero net power flow between the buses connected by
the failed line. However, these initial net complex power
compensation may not result in zero power flow between the buses
because of changes in conditions in the rest of the power network as
aresult of adding the extra sources. This may cause under- or over-
compensation. To circumvent this problem, a modification to the
computational scheme shown in Fig. 4 was implemented in the
feedback loop block of "Computation of bus powers." If a certain
line would fail, then the power flow existing in the failed line prior
to the outage is added to the complex powers of the associated buses
as shown in Fig. 5. Using this iterative scheme and with the minor
correction to the computational algorithm, Very accurate results can
be obtained without the need for changing the topology of the
network. With the proposed approach, we are merely adding extra
power sources to the system: hence it is not necessary to re-train the
ANN for each line contingency.



Table 1. The Training Set for the ANN.

-20.000 -30.000 -20.000 -20.000 20000 -20.000 15.000
-30.000  -30.000 -30.000 -20.000 -30.000 -20000 20.000
-40.000 -30.000 -35000 -20.000 -35.000 -20000 25.000
-40.000 -35.000 -35.000 -25000 -35.000 -25000 25.000
45000 35000 40.000 -25.000 40.000 -25000 35.000
-45.000 40.000 -40.000 -30000 -40.000 -30000 35.000
-48.000 40000 -50.000 -30.000 45.000 -30.000 45.000
-48.000 45000 -50.000 -32.000 45.000- -38.000 45.000
-55.000 45000 -75.000 -32.000 -50.000 -38.000 65.000
-55.000 -50.000 -75.000 -50.000 -50.000 -45.000 65.000
-70.000  -50.000 -70.000 -50.000 -70.000 -45000  65.000
-70.000  -70.000 -70.000 -70.000 -70.000 -70.000  65.000
80.000 -70.000 -75.000 -70.000 -80.000 -70.000  70.000
-85.000 -70.000 95000 -70.000 -90.000 -70.000  75.000
-85.000 -75.000 95000 -80.000 -90.000 -80.000  75.000
90.000 -75.000 -105.000 -80.000 -100.000 -80.000  90.000
-50.000 -80.000 -105.000 -90.000 -100.000 -90.000  90.000
-95.000 -80.000 -125.000 -90.000 -130.000 -90.000 100.000
-125.000 -100.000 -145.000 -120.000 -150.000 -120.000 150.000
-145.000 -100.000 -165.000 -120.000 -170.000 -120.000 190.000
-165.000 -120.000 -165.000 -130.000 -150.000 -130.000 180.000
-185.000 -120.000 -185.000 -130.000 -180.000 -130.000 210.000

3. CASE STUDY
In order to test the algorithm for its effectiveness in predicting

system security we selected a simple six-bus test system (7] as
shown in Fig. 6.
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Figure 6. Experimental test system used in the simuiation

The training set is shown in Table 1. It consists of 22 vectors of
input data and the same number of output vectors. Each input vector
has the following elements:

{P4, Qq4, Ps, Qs, Ps, Qg, P2, P3,]T

and each output vector has:

(84, V4, 85, V4, 86, [Vd, 82, 83,

The real and reactive powers have units of MW and MVars
respectively and the voltage magnitudes and angles are given in per
unit and degrees, respectively.

After rraining is completed. the ANN is tested for validation. A
set of new input training vectors are applied to the neural network.
Table 2 shows 5 such test input vectors and Table 3 shows
comparisons of corresponding bus voltages and line flows as
computed by the ANN against values obtained by off-line computer
analysis using a rigorous mathematical power flow model. Results
shown in Table 3 are for the case when no feedback is used in the
ANN. Also noteworthy is the fact that not all line flows are shown
on the table for the reason of brevity. Table 4 is similar to Table 3
except that a feedback loop was incorporated into the ANN. It may
be observed that the case with feedback yields more accurate resuits.

20.000
30.000
40.000
40.000
40.000
40.000
42.000
42.000
50.000
50.000
55.000
55.000
60.000
80.000
80.000
100.000
100.000
120.000
170.000
160.000
190.000
210.000

56

0877 1028 -1280 1.036 -1254 1037 -0.645
-1.578  1.026 -2.087 1033 2075 1.035 -1.144
.1946 1023 2287 1.031 -2157 1034 -1.195
-1.900 1.020 -2.233 1.027 2140 1.030 -1.229
2147 1018 -2.617 1025 -2.568 1.029 -1.295
2098 1015 -2.563 1.021 -2549 1.026 -1.327
22324 1014 300t 1018 3026 1024 -1421
2276 1010 -3.°77 1015 -2986 1.019 -1.451
2639 1.007 -4.181 1008 -3479 1.017 -1.448
2600 1.002 4009 0994 -3473 1011 -1.520
3879 0999 -4966 0995 -5.341 1.007 -2.705
3732 0984 4812 0975 -5329 0989 -2911
4504 0982 -5.614 0973 -6361 0987 -3.523
4955 0979 -6539 0966 -6.864 0984 -3.799
4934 0975 -6473 0957 -6.873 0977 -3.892
4656 0972 -6249 0953 -6282 0974 -3.136
4648 0968 -6.191 0943 -6304 0966 -3.236
5707 0966 -8.149 0935 -8.717 0959 -4.367
5293 0935 -7.089 0.892 -6.768 0928 -2.444
-6.963 0928 -9.674 0882 -9.846 0920 -3.545
7727 0904 -8.000 0869 -6700 0917 -2.578
-8.170  0.895 -9.998 0.856 -9.001 0907 -3.345
Table 2. Test Input Vectors for the Trained Neural Network
Test# Pa Qs Ps Qs Ps Qs P Ps3
1 -43 32 .38 -18 -32 -28 34 35
2 -50 37 -56 -40 -32 -30 53 49
3 -8 66 -71 -62 -65-65 60 75
4 -92 72 110 -85 -93 -8 98 89

S -135 90 -156 -132 -165 -124 145 180
Table 3. Validation of Bus Voltages and Line Flows

(No Feedback)
BUS VOLTAGES LINE FLOWS

ANN Actual ANN Actal

T |V = 1.02247 102108 1-2: 799 9.00
E & =-17821 -1.9240 14: 2127 2269
S v4 1.03185 1.03077 2-4: 2556 26.78
T & =-21894 23606 26 11.35 11.64
# {Vd = 1.02982 1.02965 3-6: 27.20 2834
1 & =-1.8620 -2.0197 S-6: 203 2.03
T V{4 = 101162 101282 1-2: 1325 336
E & =-16579 -1.6513 14: 2425 2376
S [v4d = 100869 101022 24: 3834 3726
T & =-21357 -21333 2.6 1267 12.82
£ V4 = 102495 1.02501 3-6: 3378 3423
2 & =-1.1799  -1.2281 5-6: 753  7.01
T 'V{ = 098270 098405 1-2: 21.17 20.58
E & =-38673 -3.7943 14: 4726 46.3%
S V4 = 097922 098128 24 60.80 $9.70
T & =-42537 41726 26 2807 27.64
# (V4 = 099372 0.99489  3-6: 67.22 6648
3 & =-4.0451 -39837 5.6 4.63 434
T [V{= 097397 097294 1.2: 2610 27.19
E & =-46641 -48183 14: 5488 $6.16
S V4 = 094950 094782 24: 6911 70.08
T & =-63593 -6.5527 2.6 4321 4356
# V4 = 097364 097323 3-6: 8824 8926
4 & =-62389 -6.4079 56: 730 7.69
T V] = 094127 093739 12: 3143 35.13
E & =-64609 -6.9309 14: 75.17  79.05
S [v{d - 088395 087684 24: 101.60 104.72
T & - -82686 -8.8373 2-6: 68.09 70.04
# V4 = 09240 091876 3.6 152.58 157.31
5 & =-84162 90166 56 1090 11.82

-0.651
-1.102
-0.898
-0.926
-1.275
-1.302
-1.664
-1.684
-1.960
-2.040
-3.432
-3.637
-4.383
-4.305
-4.400
23212
-3.320
-4.745
-1.587
-4.494
-1.205
-2.249



Table 4. Validation of Bus Voltages and Line Flows

{With Feedback)

BUS VOLTAGES LINE FLOWS

ANN Actual ANN  Acwal
T |v{= 102117 102108 12: 910 9.00
E & =-19331 -1.9240 14: 2272 22.69
S V4 = 1.03076 103077 24: 2669 2678
T & =-23694 -23606 2-6: 11.64 11.64
# V4 = 102968 1.02965 3-6: 2829 2834
1 & =-20334 -20197 56 200 203
T |v{= 1.01287 101282 12: 341 3.36
E & =-16607 -1.6513 14: 23.80 23.76
S |V = 101018 101022 24: 3722 3726
T & =-21398 -2.1333 2.6 1282 12.82
#  [V4d = 102504 1.02501 3-6: 3421 3423
2 & =-12384 -1.2281 56 701 701
T |V = 098404 098405 1-2: 20.67 20.58
E & =-37991 -3.7943 14: 4643 46.39
S V4 = 098131 0098128 2.4: 5967 59.70
T & =-41821 41726 26 27.63 27.64
¥ [Vd = 099490 099489 3-6: 66.46 66.48
3 & =-39947 39837 5.6 433 434
T [V{ = 097293 097294 12: 2725 27.19
E & =-48207 -4.8183 14: 56.18 56.16
S V4 = 094784 0054782 24: 7005 70.08
T & =-65598 -6.5527 2-6: 4355 43.56
4 [V = 097324 097323 36 8924 8926
4 & =-64154 -64079 56 7.69  7.69
T V] = 093747 093739 1.2: 3508 35.13
E & =-69307 -69309 14: 79.02  79.05
S [V4 = 087694 087684 24: 104.69 104.72
T & =-88294 -3.38373 2-6: 7002  70.04
# V4 = 091881 091876 3-6: 15924 157.31
5 & =-90101 -9.0166 56 11.81 11.82

The performance of the ANN was then tested for predicting
contingency conditions which translates into security assessment.
Table 5 shows the input vectors used and the contingencies tested in
this phase of the study. All powers are shown in MW and MVars,
Table 6 shows comparisons of the ANN outputs against those
obtained by using a power flow computer model. Some
inaccuracies may be noted in Test cases 1, 2 and 4 of Table 6. The
reason was the fact that during numerical computation of power
flows, it was found that the generator at bus 2 for case 1. generators
at buses 2 and 3 for case 2, and generator at bus 2 for case 4
respectively had exceeded their var limits and had lost voltage
contol. No such control action was incorporated in the design of the
ANN and hence the inaccuracies.
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Table 5. Inputs Used for the Test Contingencies

Test Case Pe Q
1.Genoutatbus2 -135 -90
2. Line out: 1-4 -135 90
3. Line out: 2-3 -135 90
4. Line out: 3-5 -135 90
S. Line out: 5-6 -135 90
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-156
-156
-156
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-132
-132
-132
-132
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Table 6. Comparisons of Test Contingencies

BUS VOLTAGES
ANN Actual

= 0.93995 092392
=-13.091 -13.0169
= 0.87590 0.86450
=-15.2167 -15.3047
= 051932 0.90974
=-17.2701 -17.4265

= 0.8645  0.79971
=-16.2398 -17.1182
= 0.86336 0.82533
=-14.4657 -15.1891
= 0.91643 0.88341
=-15.4939 -16.3792

0.93753  0.93745
-6.9569  -6.9577
0.87689 0.87678
-8.6551 -8.6644
091910 0.87678
-8.6806  -8.6888

3

L}

= 0.92633
= -6.7997 -6.8695
= 0.80765 0.79785
=-10.4793 -10.7502
= 0.90595 0.90151
= -6.9633 -7.0479

0.92092

= 0.93807
= -7.0244
= 0.88057
= -9.1324
= 0.92623
= -9.2336

0.93485
-6.9766

0.85992
-8.8581

0.92738
-8.9642

1-2:
14:
24:
2-6:
3-6:
5-6:

1-2:
1-5:
24:
2-6:
3-6:
5-6:

1-2:
14:
24:
2-6:
3-6:
5-6:

1-2:
14:

"
ra

1-2:
1-4:
: 104,18
2-6;
3-6:
4-5:

LINE FLOWS

ANN

114,72
120.39
93.43
65.17
157.25
1522

93.43
92.67
170.96
69.16
158.62
15.45

35.79
79.16
104.29
68.17
159.38
11.88

29.68
81.32

1 116,10
2-6:
3-6:
5-6:

69.35
183.14
30.00

35.97
79.43

68.11
152.96
13.41

Actual

110.84
121.91
85.94
60.42
163.54
15.57

91.94
99.46
172.26
62.16
170.20
16.26

35.84
759.19
104.32
68.20
159.44
11.89

29.73
83.25
115.76
68.78
186.73
31.31

35.44
80.00
106.66
66.77
150.86
15.96

P:

145
145
145
145

180
180
180
180
180



4. CONCLUSIONS

Computation time for security assessment using a trained neural
network approach is significantly shorter than that required by
numerical analysis under identical contingencies. A single layer
ANN was experimented for this purpose and the projection
algorithm was used for training. Results obtained were generally
comparable to actual output from numerical computations and no
need was felt for experimentation with a multi-layer neural network.
For a given power system, the ANN has to be trained only once and
subsequently will operate for any load condition in the system. This
includes normal power system operating condition operation with no
outages as well as for operating conditions under contingencies of
generator and line outages. A new algorithm was developed in
order to incorporate line outage condition into the ANN. Very
accurate results could be obtained without the need for changing the
topology of the network under contingencies. With this approach, it
was not necessary to re-train the ANN for each line contingency.
Test results from a case study on a small power system are shown.
A degree of accuracy can be seen from comparisons with actual
results.

Although the test case shown in the paper deals with a small and
simple power network, the approach described can be easily
extended to much larger and complex systems. We believe that with
larger networks, a somewhat larger mput training vector having
information on tap-changing transformers, phase-shifting transfor-
mers, reactive compensators, capacitors and synchronous conden-
sers will be required. We are confident that the solution time for the
ANN execution will not slow down considerably with a larger
network because about 90 per cent of the weights found for the
neurons will be insignificant.
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