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SUMMARY

A VERY FAST and effective algorithm based on the charge conservation principle for the transiemg
analysis of integrated circuits is presented. This algorithm uses the explicit method computation
therefore time is directly proportional to the circuit complexity. For a medium-sizz MOS circuit
the computing time is up to 100 times shorter than that required by the SPICE2 program. In the
case of large circuits. even better results are expected.

1. INTRODUCTION

HistoricaLLy. CAD tools were first developed for linear circuits which required
the solution of a set of linear equations. Then, more useful programs for transistor
networks were developed in which nonlinear equations were linearized. The existing
linear analysis programs were used many times in a Newton iterative procedure.
Next, the transient analysis was introduced where nonlinear analysis was carried
on for each time interval.

The majority of existing programs more or less follow the above procedure [1].
To improve the computing speed, various approaches are used, such as sparse
matrix techniques, implicit integration methods, a sparse tableau analysis method
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[2], a modified nodal analysis method [3], circuit decomposition and a modular
approach. A notable exception-is the waveform relaxation method [4], which
also takes advantage of signal latency. It requires, however, a very large memory
and, in the case of circuits with many feedback loops, its efficiency is rather poor.
A method to compress storage data by one or two orders of magnitude has
been also published [5].

In this paper, we describe a simple explicit method [8], in which the computing
time for medium-size circuits is up to 100 times shorter than that required by the .
SPICE2 program [6, 7). In the case of large circuits, even better results are
expected. It should be pointed out that the SPICE2 program has been designed
as a universal program for very accurate solutions but not as a.very fast transient
analysis program. It is used here to check accuracy of our solutlons and as
a reference only for speed comparison.

The paper proceeds as follows. First we describe the algorithm to be used,
which uses the unbalance of the conduction currents at each node to compute
the charge stored on capacitances connected to each node. Then, the method
of partitioning the charge among the capacitances is described in terms of the
analysis of a capacitive network. Next, as an example, the transient response
of a cascade of 4 bipolar transistor inverters is calculated. Finally, the transient
responses of various CMOS circuits are calculated. In general, for this algorithm
the computing time is directly proportional to circuit complexity.

2. PRINCIPLE OF THE ALGORITHM

At any node in the circuit consisting of nonlinear resistors, sources and
capacitances, displacement current must flow if the algebraic sum of conduction
currents flowing into a node is not zero. These displacement currents result
from the charging of capacitances connected to the node. In general, a set
of nonlinear differential equations has to be solved

Ii;(V)+Cyj(vy;) dvyy/dt =0
I;; (V)+Cij (vyy) dU,-j/dt =0 (1)

where I;;(V) are the conduction currents flowing into node i; these may be
nonlinear functions of several node voltages, C;;(v;) are grounded (i =j), and
coupled (i = j) capacitances; these may be nonlinear functions of voltage, v;; are
voltages betweeb nodes j and i, N is the total number of nodes.

If it is assumed that all voltages are known, the values of all conduction
currents can be calculated. The net conduction current I; folowing into a node
for a time interval 4t produces a charge increment.4Q; = I; 4t which is distributed
among the capacitances connected to the node. In an integrated circuit the
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capacitances are nonlinear functions of node voltages of conduction currents;
thus, if the node voltages are known, the capacitances can be calculated. Then,
a network of capacitors of known capacitance can be analyzed with the previously
calculated value of 4Q; at each node; from, this the corresponding 4v; at each
node can be determined. For the next time interval the node voltages are
incremented by their appropriately Av;, New I;, 4Q; and Av; are then computed.

The algorithm is thus implemented as follows:

1) If initial node voltages are not known, assume plausible values (perhaps 0)
and compute the net conduction current at each node

K - . .

L= 3 L0, )

where the summation indicates that there are K conduction currents flowing

. into node i. Note, that these may be nonlinear functions of various node voltages.

In the static case, the I; are, of course, all zeros.
2) Calculate for each node the charge increment accumulated during At

t+ A4t

AQ;= [ Al (1)dr. 3)

Since the functions I; () are generally unknown, and only discrete values for
the previous time steps were calculated, the shape of this function can be predicted
using zero, first or second order interpolations methods:

— with the zero order interpolation

AQ; = At I (1), 4
— with the first order interpolation
A4Q; = 4t-[1.51;(t)—0.5 I; (t — 4r)], (5
— with the second order interpolation
AQ; = At [1.75I; (t)—1I; (t = 4t)+0.25 I, (t — 241)]. (6)

~In the last case. values from two previous time periods must be stored in
memory. For the zero-order case, very short time steps must be used to achieve
the required accuracy. As a compromise, the first-order case was used in examples
to be given. '

3) Using some appropriate interpolation method. predict the values of all
nonlinear capacitances for the time t+ 4t. For example, with the first order inter-
polation

C (t+4t) = 2C ()= C (t— 41). (7)
4) Compute the Av; at each node. Since the AQ; are known, as are the

capacitance values of all capacitors, the following set of equations representing
the capacitor network must be solved
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N .
G, Ul"‘j; Cyj(vj—vy) =0,

N
Civ; +j;1 Cij(j—v)=Q; , . ®)

N
Cy+uy +1;1 Cyj (v;—vy) = Qn,

where C,, C;; are interpolated values of grounded and coupled capacitances,
d4r;, 4v; are increments of node voltages caused by the charge increment 4Q;.
Note, that if there are N nodes then Eq. (8) represents a system of N linear
equations. Solution of these equations is discussed in the next section.
5) Compute the new values of node voltages

v; (t+ 4¢) = v; (£)+ Av,. 9)

In the implementation of the algorithm, the time period of interest, T, is
divided into subintervals called external time steps. Data points are to be calculated
at each external time step. The external time steps are divided into intervals
called internal time step. An iteractive procedure using the internal time steps is
carried out to obtain convergence for each external time step.

3. SOLUTION OF THE CAPACITIVE NETWORK

As was discussed in step 4) of the algorithms, to compute the v; a network
of capacitors must be analyzed. Such a network is characterized by a matrix
equation in the general form

[Cnn] [vn] = [4Q4]. (10)

Since the capacitance values for a given time interval are held constant,

Eq. (10) is linear. Moreover, since the capacitive network is passive, the main

diagonal of the Cyy matrix is always dominant. Therefore, a simple Gauss-Seidel
iterative procedure can be applied, and convergence 1s quaranteed.

- In examples that have been analyzed with the Gauss-Seidel procedure, conver-
gence was typically obtained in 10 to 20 iteractions when the grounded capacitances
were dominant. However, convergence is slow in cases where large capacitances
between nodes occur. As an example, consider the circuit of FiG. 1. In this case,
the capacitances between nodes are up to 10000 times greater than the grounded
capacitances, and convergence was not obtained even after 100 iteractions; this
is illustrated in FiGc. 2.

A method producing a more rapid convergence assumes an exponential
relationship for the node voltage increments

Av; (k+h) = Av; (k)-[1—exp (—h )], (11)
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F1G. 1. Example of capacitive circuit activated by voltage source applied to node 9 and by injected
charges into nodes 1 and 2.
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FiG. 2. Node voitage increments v; for the circuit shown in Fig. 1 as a function of number of iterac-
’ tions of a Gauss-Seidel algorithm.

where Av; (k) is the voltage increment at node i for the k-th iteration, Av, (k+h) is
the voltage increment at node i for the k+h iteration, a; is the “attenuation
constant” defined by

% = 1/In [v; (k—1)/v; (K)]. (12)
Therefore, after a few steps of using the standard Gauss-Seidel [iterative
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procedure, new predicted values of node voltages can beé computed as for
example, the k+100 step. Fic. 3 shows that, even for networks with large
capacitances between nodes (Fig. 1), rapld convergence is obtained.

10v

0sv

0 20 40 60 80

FiG. 3. Node voltage increments v; for the circuit shown in Fig. 1 as a function of number of iterac-
tions of a modified Gauss-Seidel algorithm.

4. SIMULATION OF BIPOLAR INTEGRATED CIRCUITS

To test the algorithm, a cascade of 4 bipolar inverter stages shown in FiG. 4
was analyzed. Such a saturating type of circuit has very nonlinear capacitances.

T1pF@T1pF |

FiG. 4. Bipolar circuit anélyzed with CHACO and SPICE2 programs.
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FiG. 5. Equivalent circuit for the bipolar NPN transistor model used in CHACO.

- TABLE 1

Functional dependence of NPN bipolar transistor
‘ model

Icp = Isp = [exp (Vag/Vy)— 1] % (1 + Vep/ Vi)
Ter = Tsp#[exp (Vac/ Vi) — 1] 2 (1 + Vip/ V]
Iy = Icp/Be+1IcpiPr

Ie = Icp—Icp®(1+1/Bg)
Ip=Icg—Icp(1+1/85)

Coe = Cyro*(Vpg+ V) —05

Csc = Cpco* (Vep+ Vp)~0.5

C’.'= Icp"tp/V-r

Cr=Icg*tp/Vy

The equivalent circuit for the bipolar transistor model is shown in F1G. §: functional
dependencies of the nonlinearities are given in TabLE 1.

FiIGure 6 shows the computed waveforms for the node voltages for a time
increment of 1 ns and total time period of 100 ns. The results from a SPICE2
analysis are shown in FiG. 7. Note that there are no significant differences between
those figures. All computations were performed on a VAX-11/780 computer; for
our algorithm the CPU time was 9.10 seconds while with SPICE2 it was
23.66 seconds. The times are not very different due to the fact the circuit
contains large highly nonlinear capacitances which are not grounded and also
static characteristic of bipolar transistors are very nonlinear in -nature. T'ius, the
explicit algorithm does not have significant advantage over the implicit method
used in SPICE2. In order to secure convergence for this particular circuit, the
internal time step was 12 times smaller than the external time step of lns.
In other words, the maximum possible internal time increment in computing

the algorithm was 0.08 ns. For larger internal time steps, convergence was not
obtained.
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F1G. 6. Computed waveforms of the node voltages for the circuit of Fig. 4 obtained with program
CHACO.
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F1G. 7. Computed waveforms of the node voltages for the circuit of Fig. 4 obtained with program
‘ SPICE2.
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5. SIMULATION OF MOS INTEGRATED CIRCUITS‘

The method described herein is more suitable for simulation' of MOS circuits
than bipolar circuits because the nonlinearities in the MOS type are less severe.
A cascade of 7 CMOS inverters shown in FIG. 8 was analyzed. The device equivalent
circuit is shown in Fic. 9, and the functional dependencies of the parameters are
given in TaBLE 2. This MOS transistor model includes channel length modulation,
body effect due to substrate biasing, and subthreshold conduction as well as normal

and inverted operation.
®
[ ! , 5V
I1pF TLpF

b
i

FiG. 8 Cascade of 7 CMOS inverters analyzed with CHACO and SPICE2 programs.
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F1G. 9. Equivalent circuit for the N-channel MOS transistor model.

The computed node voltages of the circuit of Fig. 8 are shown in Fic. 10; and
results obtained with SPICE2 are shown in Fig. 11. No significant differences
are observed. For our method the CPU time was 1.99 seconds, while for SPICE2
it was 184.74 seconds. Since the MOS transistor parameters are inherently not
as strongly nonlinear as those of bipolar transistor, an internal time step equal
to the external time step (2ns) was used.

Comparison with the SPICE2 program was also performed for a cascade
of 4 CMOS inverters and a cascade of 9 CMOS inverters. The CPU times for
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TABLE 2

Functional dependence of N-channel MOS transistor |
- parameters ‘

V, = abs (Vps)

Vy = Vsp; il Vpp < Vsp then V; =V ~
Vin= Vmo+G*[(F=V;)** - F%*]

Vs = Vgs; if Vgp> Vgs then Vy = Vg

Vo=Vs—Vp . N
if Vo<Z then V,=Z=*exp(V,/Z-1)

Vs =V,; if Vi<V, then Vs =V,
Ipo=B*(V,—05+Vs+(1+K=*V))

if Vs <0 then Ip= —1Ip

Csg = Cspo * (Vps+ F)** .
Cps = Cpgo*(Vap+ F)*?

Ces = Casos if Vos> Vry then Cos = Cgso+Cox -
Cep = Cepos; if Vp> Vny then Cgp = Cgpo+Cox

Program CHACO CPU=199s

S0V
4
2 3 5 7 9

L0V ‘ , .
/
20V ]
10v , /

\ A A

0 40ns 80ns 120ns 160ns 200ns

FiG. 10. Computed waveforms of the node voltages for the circuit of Fig. 8 obtdined with program
CHACO.

various circuits are summarized in TABLE 3. Note that for our method the CPU
time is directly. proportional to the number of nodes, while the SPICE2 it is
approximated by

t(‘pu ~ NL4. (13)
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Program SPICE 2

CPU=18474s

4 A6
' 2V [3lilsl L7 o
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|
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A
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SPICE2.

TABLE 3

Comparison of the CPU times

on VAX 11/780 com-

puter for several circuits using CHACO and SPICE2

programs

CMOS Inverters CHACO SPICE2
4 stages
8 transistors 1.26s 79.18s
6 nodes
7 stages
14 transistors 1.99s 184.84s
9 nodes
9 stages
18 transistors 2.34s 266.99s
11 nodes
97 stages
194 transistors 23.04s —
99 nodes

69

FiG. 11. Computed waveforms of the node voltages for the circuit of Fig. 8 obtained with program

Thus, our method is attractive for large circuits. To illustrate this property, the
relatively large circuit shown in FiG. 12 was analyzed; the results are shown in
Fic. 13. No advantage of the inverter stage similarities has been taken, however.
The CPU time for this circuit with 97 inverters (194 transistors) was only
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23.04 seconds. It can thus, be predicted that a circuit of 2000 MOS transistor
circuit will require about 230 seconds of CPU time, less than the time required
by SPICE2 for the 20 transistor circuit previously analyzed. Circuits with trans-
mission gates, with flip-flops and ring oscillators were also analyzed. Generally,
CPU time increased proportionaily with the number of circuit elements and
number of nodes. Apart from this, the circuit structure itself had no effect on CPU
time. Since static analysis does precede transient analysis, no problems with
convergence occur. In the case of a program such as SPICE2, no static solutions
may develop for circuits with a strong positive feedback or oscillatory nature.
Our program will always give a solution if a small enough internal time step
is chosen. Consider, for example, a 7 stage CMOS ring oscillator, where there
are no static solutions. The oscillation will take place as shown in FiG. 14. A dis-
advantage of the program is that, if initial voltages are not properly chosen,
some time is required before the circuit reaches state as can be seen in Fig. 10.
If the choice of initial voltages is very poor, this time can be relatively long.
This effect is illustrated in Fic. 15 where the transient response for a cascade
of 7 inverters is shown, with all initial voltages were 2.5 V. The same time is
required in an actual circuit to obtain steady state.

9 10 1 12 13 14 15 16
baddddddd
b d 7 o EF
= o2 rf;l -
EP e s f s s =
e e e I e e e e
- EP CaC l:p -
N R R R e f e r_JP -
o I o s e I I_FJ 3
- - (o EF 3
Ca 3 Ca 3 EJEP c3
nipalplpeipaipalvaly

—D—One stage CMOS inverter

F1G. 12. Block diagram of the circuit containing 97 CMOS inverters analysis with CHACO program.



PI

STASZAK

nsistor |
-quired 5 ' Cohe2 / \
trans- - " \ Ve .
1€ | ,
rally, | o m
9
8

s and
1 CPU !
5 with

tutions ; \ f

1ature. | R /——\

e step , |

there | : 5 .\ /S SO

A dis- { 4 m
i

‘hosen,
1G. 10.

long.

ascade | T\ [
ime is 0 o
Fi.. 13 Computed waveforms of some of node voltages for the circuit of Fig. 12.

/

0 ns

FiG. 14. Computed transient waveforms of the node voltages for the ring oscillator of 7 CMOS
inverters. after power is switched “on”, obtained with CHACO program.

rogram.



12 B. M. WiLamowskl, D. J. HAMILTON, Z. J. STASZAK

200ns

F1G. 15. Computed transient waveforms of node voltages, before circuit will reach steady-state, if all
initial node voltages were setted to be 2.5 V.

6. CONCLUSION

The method we have described for the transient analysis of nonlinear networks
of resistors, capacitors and sources requires a CPU time proportional to the
circuit complexity in contrast to classical matrix methods CPU, where time is
proportional to N? or more sophisticated approaches which show dependence
on N™ where m is in the range of 1.2 to 1.5. ,

While the Gauss-Seidel iteration procedure used in this paper has the advantage
of ‘simplicity, it is not very suitable for circuits which have large inter-node
capacitances. However, it should be noted that, for such cases, a significant

‘reduction of computing time is possible.

In the digital integrated circuits the time constances of all nodes are of similar
order (strongly related to the delay time of a single stage). Therefore proposed
algorithm is fit very nicely for the digital IC analysis and simulation. In case
of analog ICs the smallest time constant of whole circuit determines the internal
time step and therefore in some circuits large number of time steps and long
computing time can be required.
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Further reduction of CPU time can be expected if means: are used fo take

advantage of signal latency (temporary sparsity). The algorithm is so Structured
that it is relatively simple to omit computation at inactive nodes when this is
warranted. | - "
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STRESZCZENIE

ANALIZA CYFROWYCH UKLADOW SCALONYCH PRZY ZASTOSOWANIU
ZASADY ZACHOWANIA LADUNKU

Przedstawiono szybki i efektywny algorytm do analizy ukladéw scalonych, oparty na zasadze
zachowania fadunku. Ten algorytm postuguje si¢ jawna metoda obliczen 1 dlatego czas jest wprost
proporcjonalny do zlozonosci obwodu. Dla sredniej wielkoéci obwodéw MOS czas obliczen jest
blisko 100 razy krotszy, niz wymaga tego program SPICE2. W przypadku bardziej zlozonych
ukiadéw algorytm obliczeri moze by¢ bardziej efektywny.

PE3oME

AHAJIM3 HHUOPOBBIX HMHTEIPAJIbHBIX CXEM C TIMPUMEHEHHMEM [IPMHLIUIIA
COXPAHEHHSA 3APAIA

IIpenctasnen GBICTPBIH M 3(dEXTUBHEIN ANTOPHTM aHANU3a HHTETPAJIBHBIX CXEM HCNOJb3y-
IOMIMH NPHHIMI COXPaHEHWS 3apada. B anropuTMe npuMeHéH ABHBIA METOX paccuéToB, Giaro-
laps 4YeMy BpEMA MPAMO MPOMOPUHOHANBHO CTENMEHH CHOXHOCTH cxembl. Juna cxem MO
CpeltHeil CNOXHOCTH BpeMA paccyéToB moutn B 100 pas kopoue geM B cjydae [pOrpamMMEl
SPICE 2. [lna Gojiee CIOKHBIX CXEM ZJITOPHTM pacCYéTOB MOXET OuITh GoJiee 3¢ pexTHBHBIM.



