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Abstract: Deployed in a hostile environment, the individual Sensor Node (SN) 
of a Wireless Sensor Network (WSN) could be easily compromised by an 
adversary due to constraints such as limited memory space and computing 
capability. Therefore, it is critical to detect and isolate compromised nodes in 
order to avoid being misled by the falsified information injected by adversaries 
through compromised nodes. However, it is challenging to secure the flat 
topology networks effectively because of the poor scalability and high 
communication overhead. On top of a hierarchical WSN architecture, a novel 
algorithm based on Weighted Trust Evaluation (WTE) to detect malicious 
nodes for hierarchical sensor networks is proposed in this paper. The 
hierarchical network can reduce the communication overhead among SNs  
by utilising clustered topology. The proposed algorithm models a cluster  
of SNs and detects malicious nodes by examining their weights that represent 
the reliability of SNs. Through intensive simulations, the accuracy and 
effectiveness of the proposed detection algorithm are verified. 

Keywords: wireless sensor networks; WSNs; network security; hierarchical 
topology; malicious node detection. 
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1 Introduction 

Recent achievements in the areas of Micro-Electro-Mechanical Systems (MEMS) and 
low power integrated electronic devices have led to the development and wide 
application of Wireless Sensor Networks (WSNs) (Estrin et al., 1999; Servetto, 2006; 
Tubaishat and Madria, 2003). WSNs consist of very small devices, called Sensor Nodes 
(SNs). These SNs are battery powered and equipped with integrated sensors, a  
data-processing unit, a small storage memory, and short-range radio communication 
(Vieira et al., 2003). Typically, these sensors are randomly deployed in a field, forming 
an unattended wireless network. The objective of these SNs is to collect data from the 
field, partially aggregate data, and send aggregated data to a sink that is responsible for 
data fusion. Sensor networks have applications in emergency-response networks, energy 
management, medical monitoring, logistics and inventory management, and battlefield 
monitoring. 

In contrast to traditional wireless networks, special security and performance issues 
have to be carefully considered for sensor networks (Zhou and Haas, 1999). For instance, 
due to the unattended nature of sensor networks, an attacker could launch various attacks 
and even compromise sensor devices without being detected. Therefore, a sensor network 
should be robust against attacks, and if an attack succeeds, its damage should be 
minimised. In other words, compromising a single SN or a few SNs should not be able to 
crash the entire network.  

Another concern is about energy efficiency of SNs. In a sensor network, each SN may 
need to support multiple communication models including unicast, multicast, and 
broadcast. Therefore, due to the limited battery lifetime, security mechanisms for sensor 
networks must be energy efficient (Yu et al., 2004). Especially, the number of message 
transmissions and the amount of expensive computation should be as small as possible.  

In fact, there are a number of attacks that an attacker can launch against a WSN. For 
instance, HELLO flooding attacks (Karlof and Wagner, 2003), sink hole attacks (Karlof 
and Wagner, 2003), Sybil attacks (Newsome et al., 2004), black hole attacks (Sun et al., 
2002), worm hole attacks (Hu et al., 2003), or DDoS attacks (Du et al., 2005) are  
well-known options for attackers. These attacks lead to anomalies in network behaviours 
that are detectable in general. There are some solutions reported to detect these attacks by 
monitoring the anomalies (Karlof and Wagner, 2003). 

In this paper, we address an even trickier attacking scenario. After gaining the control 
over a number of SNs in a network, an attacker performs an insider attack, sending 
falsified information through the compromised nodes instead of simply destroying  
these nodes. The purpose of this insider attack is to mislead the operator of the network 
by using falsified data. This may lead to more serious consequences; for instance,  
in the battlefield a false report regarding the operations of the enemy may lead to 
unnecessary casualties. 

We proposed a Weighted Trust Evaluation (WTE) based algorithm to detect 
compromised nodes by monitoring the data that the nodes reported. This is a  
light-weighted algorithm with little overhead. The algorithm is based on a hierarchical 
topology network for reducing the communication overhead among SNs. Base stations 
including Forwarding Nodes (FNs) and Access Points (APs), playing different roles in  
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this hierarchical network, are also introduced. The proposed algorithm models a cluster of 
SNs under the control of a FN and detects malicious nodes by examining their weights. 
These weights are assigned to SNs, representing the reliabilities of SNs. 

The rest of the paper is structured as follows. In Section 2, we briefly review several 
related malicious node detection approaches. Section 3 describes a hierarchical network 
structure and the principle of the WTE based malicious node detection algorithm. The 
experiment setup and simulation results are presented in Section 4. Section 5 wraps up 
this paper with a discussion about the effectiveness and implementation issues of  
the algorithm. 

2 Related work 

WSNs are often deployed in a hostile environment and work without human supervision. 
Individual node could be easily compromised by an adversary due to the constraints such 
as smaller memory space and limited computing capability. Security has been one of the 
most important topics in the research community of sensor networks (Ayday et al., 2007; 
Karlof et al., 2004; Zhu et al., 2003). In this section we briefly review some reported 
works closely related to malicious node detection. 

It is critical to detect and isolate the compromised nodes in order to avoid being 
misled by the falsified information injected by an adversary. Researchers (Luo et al., 
2002) have pointed out that infrastructureless ad hoc networks rarely have a real defense 
mechanism against most of the attacks, including both outsider and insider attacks such 
as compromised node attacks. They suggested a system design that if one node is named 
trusted by certain number of its neighbouring nodes, that particular node is trusted both 
locally and globally. However, since the system uses a minimum number of trusted 
nodes, it is not so applicable to sensor networks where the nodes are randomly spread 
out. In other words, it is possible that under certain conditions nodes are not able to find 
the minimum number of neighbouring nodes to be named trusted.  

One solution for localisation anomaly detection in a group of nodes is suggested (Du 
et al., 2005). Every node obtains the localisation information from its neighbouring 
nodes, and then computes the localisation information itself and compares these two 
values. If the difference is small enough, this node concludes there is no adversary around 
causing the localisation problem in its location. 

Researchers also suggested detecting malicious nodes using signal strength (Junior  
et al., 2004). The basic idea is to depend on neighbourhood monitoring of SNs. Every SN 
monitors its surrounding and whenever a transmission signal is detected, it will examine 
whether the signal strength of the transmitting node is compatible with the originator 
node’s geographical position. Even though this approach is applicable, it is not efficient 
in many ways. The large overhead needed for transmitting data is a major problem for 
both sending and processing. Also it is not energy-efficient since all nodes are monitoring 
and processing data all the time. 

The work reported in Curiac et al. (2007) is the closest to our approach. They 
proposed to detect a malicious node by comparing its output with an aggregation value. 
Inspired by the Byzantine problem, our approach is more straightforward and incurs 
much less overhead since no expensive calculation is involved.  
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Karlof and Wagner (2003) suggested to construct efficient random sampling 
mechanisms and interactive proofs, thus a user can verify that the answer given by the 
aggregator is a good approximation of the true value even when a fraction of SNs are 
compromised. Apart from WSNs, the Byzantine problem is also considered as an 
important issue in other fields. For instance, in the research of cognitive radio network 
(Chen et al., 2006), the Byzantine problem was investigated to enhance the robustness of 
distributed spectrum sensing against terminals experiencing Byzantine failure. 

From the perspective of system level security on top of cooperative behaviour among 
individual SNs, reputation-based frameworks have been developed (Ganeriwal and 
Srivastava, 2004; Sun et al., 2006). Each SN maintains reputation values of its peers, 
based on that a node can make decision whether its peers are trustworthy. Hence, 
malicious or misbehaviour nodes will be isolated from the cooperation group. This 
approach works well in distributed systems where cooperation among agents is desired to 
improve the system performance. However, the storage and computing power constraints 
tremendously limit the SNs’ capability of handling the reputation maintenance and 
calculation jobs. 

3 Weighted Trust Evaluation (WTE) based algorithm 

3.1 Hierarchical network architecture 

Figure 1 depicts the network architecture in which the WTE based detection algorithm is 
implemented. This architecture is similar to the one utilised in Zhao et al. (2003) that is 
based on a three-layer hierarchical topology, consisting of the following three types  
of nodes: 

1 Sensor Nodes (SNs): common nodes in a WSN with limited functionality 

2 Forwarding Nodes (FNs): more powerful nodes that forward the data obtained  
form SNs to the upper layer 

3 Access Points (APs): nodes that route data between wireless networks and the  
wired infrastructure. 

Figure 1 Architecture of the hierarchical WSN (see online version for colours) 
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A number of SNs are organised as a group and controlled by a higher layer node: FN. 
Therefore, in contrast to SNs in flat ad hoc sensor networks, SNs in this hierarchical 
network are not equipped with multi-hop routing function to their neighbour nodes. Each 
SN communicates only with its FN including sending information to and receiving 
information from FNs.  

FNs in the middle layer on top of the SN layer offer multi-hop routing function. Each 
FN has two wireless interfaces: one communicates with lower layer SNs belonging to its 
management, and the other connects to a higher layer node: AP.  

APs located on the highest layer have wireless and wired interfaces, providing  
multi-hop routing for all sensor and FNs within the radio range as well as routing data  
to the wired network. Moreover, APs have the functionality of forwarding control 
information from the wired network to forwarding and SNs. In this paper, we assume 
FNs are trustful and not compromised by any attack. We also assume APs are trustful, 
otherwise the adversary can inject any data without been detected.  

Meanwhile, this hierarchical network can be considered as a distributed information 
aggregation network (Przydatek et al., 2003). Based on the information reported by SNs, 
FNs compute an aggregation information and commit the information to APs. Since SNs 
may be compromised and report falsified information, it is important for FNs to verify 
the correctness of the information. Similarly, it is also desired that APs possess the ability 
of verifying the committed information. 

Table 1 summarises the symbolic notations used throughout this paper to aid in 
explanation of the WTE based algorithm.  

Table 1 Symbolic notations 

Symbol Meaning 

SN Sensor node 

FN Forwarding node 

AP Access point 

Wn Weight value of a sensor node 

E Aggregation result 

Un Output of a sensor node 

θ Weight penalty  

β Weight value recovery rate 

rn A factor reflecting the coincidence of a sensor node with its neighbouring nodes 

N Number of sensor nodes under the same forwarding node 

Ns Number of the neighbouring nodes of a sensor node 

Nm Number of nodes sending different report among the neighbouring nodes 

th Recovery time, time length for weight value recovery 

3.2 Malicious node detection 

As mentioned previously, SNs in WSNs are usually deployed in hostile environments 
such as battlefields. Consequently a SN may be compromised or out of function and then 
provides incorrect information to mislead the whole network. This problem is called  
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as the Byzantine problem (Lamport et al., 1982). For instance, a compromised SN 
(malicious node) may frequently report incorrect information to higher layers. The 
aggregator (FN) is thus not able to obtain correct aggregation information due to the 
effect of this malicious node. Thus, the detection of malicious nodes becomes an 
important issue in WSNs. 

At the first step, a weight based network that applies WTE is adapted for a group of 
SNs and its FN. As shown in Figure 2, a weight Wn is assigned to each SN to represent 
the reliability of the node. In the process of aggregating the information sent by the SNs, 
the FN utilises the weights and calculates the aggregation result as follows: 

1

,
N

n n
n

E W U
=

= ×∑  (1) 

where: 

E = the aggregation result 
Wn = the weight with the value ranging from 0 to 1 
N = the number of SNs in the group. 

One concern is about the output Un definition of SNs. In practice, the output information 
Un may be binary information (e.g., ‘false’ or ‘true’) or continuous numerical values 
(e.g., temperature reading). Thus the definition of the output Un is application dependent.  

Figure 2 Weight trust evaluation for malicious node detection (see online version for colours) 
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Then, the next issue is to update the weight value based on the correctness of information 
reported by each SN. Updating the weight of each SN has two purposes. First, if a node is 
compromised (becomes a malicious node) and frequently sends its report inconsistent 
with the aggregation result, its weight value is going to be decreased. Once the weight 
value of a SN is lower than a threshold, the node can be considered as a malicious node.  
Second, the weight is used to represent how much the information of a node may 
contribute to the aggregation result. This is reasonable since if the report from a node 
tends to be incorrect, it should be counted less in the calculation of the aggregation result. 

This logic is reflected in the following equation: 

( )
,n n n

n
n

W r if U E
W

W elsewise

θ− × ≠⎧
= ⎨
⎩

 (2) 
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where θ is a weighted penalty. When the output of a SN is not consistent with the 
aggregation result E, its weight value is decreased by the weight penalty θ multiplying a 
factor rn. The rn reflecting the coordination of the node with its neighbouring nodes  
is defined as:  

rn = Nm / Ns (3) 

where Ns is the total number of the neighbouring nodes, and Nm is the number of nodes 
sending different report among the neighbouring nodes.  

Furthermore, a normalisation operation as described in the following equation is used 
to keep weight values of SNs in the range of [0, 1]. 

1/ max( , ).n n NW W W W=  (4) 

Finally, the weight of each SN is periodically examined by the FN. If the weight value is 
lower than a threshold, the node is identified as a malicious node and isolated from the 
network. 

This WTE based detection algorithm can be widely used in different types of sensor 
networks. The number of SNs could be varied, making the algorithm suitable for 
arbitrary size networks. Note that the parameters including the weight penalty and 
threshold are dependent on applications and need to be determined carefully for 
achieving an effective and accurate detection. For instance, the weight penalty could 
greatly change the detection time and the accuracy of the algorithm. 

3.3 Weight value recovery 

As presented in Section 3.2, the weight value of a SN is decreased once it is detected 
reporting incorrect information. However, this incorrect information may be merely due 
to a temporary interruption in communication channel, the SN is neither compromised 
nor out-of-function. It is not desired to keep the weight values of such nodes low 
permanently. Thus, a mechanism is needed to recover weight values of SNs if they work 
normally after that disturbance. For this purpose, an adaptive weight value recovery 
algorithm is proposed in this section.  

The rationales of this algorithm are considered as follows. If a SN has been out of 
function, the data from it will always mismatch the aggregation result. Also, if a node has 
been compromised by the adversary, at least it needs to report falsified information for 
certain length of time if it intends to mislead the operator of the sensor network. 
Therefore, whether it is time to recover the weight value depends on the behaviour of a 
node during the past certain period of time. 

This logic is reflected in the following equation, if the weight value Wn < 1, this value 
is updated as:  

min[ (1 ),1] ( )
,n n n c

n
n

W r if U E and t
W

W elsewise

β+ × − ≈ ≥⎧
= ⎨
⎩

ht  (5) 

where: 

β = a weight recovery rate 
tc = the time in which the SN behaves correctly  
th = (preset threshold) the required length of time for weight value recovery, named  

  as recovery time. 
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Only if the SN has been behaving correctly longer than the recovery time th, its weight 
value is increased. The parameter rn is defined as Equation (3) in Section 3.2.  

In experiments reported in this paper, we assume that each SN reports to the FN 
periodically, both th and tc are defined in number of period cycles. Once a node’s weight 
value become lower than 1, its past behaviour is examined and compared with the preset 
threshold th. If the node has worked normally long enough, its weight value is recovered 
according to Equation (5). The flowchart of the weight recovery algorithm is presented in 
Figure 3. 

Figure 3 Flowchart of the weight value recovery mechanism 

 

In this algorithm, the set of key parameters including the weight recovery rate β and the 
recovery time threshold th determine the performance of the system. If β is set too large, 
or the threshold th is set too low, a malicious node can easily regain its trust value, which 
was reduced by the algorithm in Section 3.2. On the other hand, if the threshold th is  
too high, an innocent node may be punished for a long time unnecessarily. However, 
there is no theoretical model to describe the impact precisely. Therefore, we investigate 
their impact through intensive simulation experiments to choose the optimal values. The 
simulation experimental results are reported in Section 4.3 in detail.  
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4 Simulation experimental results 

4.1 Simulation setup 

Intensive simulation experiments using MATLAB have been conducted to evaluate the 
effectiveness of the WTE based malicious node detection algorithm. In the simulation, 
the detection algorithm is deployed at a FN to monitor all SNs under the control of this 
FN. The detection is performed every cycle, which is used as a basic time unit of the 
simulation. For convenience, the output of SN is either as ‘2’ (alarm) or ‘1’ (no alarm).  

Since a continuous value is used in Equation (1), it may be a concern that whether the 
results under such a particular subset of parameters could hold for general cases. For the 
purpose of this paper, it is enough to verify the correctness and effectiveness of the WTE 
idea. Essentially, the issue has been simplified by using ‘2’ or ‘1’ is the resolution that 
our monitoring nodes possess. We are investigating this problem in our ongoing efforts. 

Assume that a SN is compromised randomly by an attacker in each cycle at a preset 
probability, referred to as the attack probability, and the malicious node keeps reporting 
the opposite information once compromised. For instance, a malicious node always sends 
‘alarm’ while the aggregation result computed from all SNs is ‘no alarm’. Meanwhile, a 
normal SN may also send alarm when real alarm occurs. This case also occurs randomly 
at a different probability called the alarm probability. 

Under the assumption that SNs are densely deployed to monitor certain target. In 
contrast to malicious nodes, if a normal node started sending alarms, some of its 
neighbour nodes will be triggered to start sending alarms after a short delay time. 
Furthermore, normal alarming nodes stop sending alarms after a certain cycles. The node, 
which is detected or misdetected as a malicious node, is inactivated from the whole 
processing except when the weight value recovery mechanism is incorporated.  

Figure 4 shows an example of SN deployment in the simulation environment. SNs are 
uniformly deployed in a square plane. A SN may be a malicious node, a normal node, or 
a normal node that generating alarms. 

As indicated in the research of Byzantine General Problem (Lamport et al., 1982), 
when the number of betrayed generals exceeds one third of the total number, the loyal 
generals cannot achieve a good decision. In our problem, similarly, if the number of 
malicious nodes is larger than 33% of the total nodes, it could be difficult to detect the 
malicious nodes accurately. Therefore, the detection is terminated when more than 25% 
of all nodes are detected as malicious nodes or reaching 200 simulation cycles. Each 
result is calculated form an average over 1000 independent simulations. As the scenarios 
where the number of malicious nodes exceeds 25% or even beyond 33%, we leave that 
for our further studies. 

Three metrics are defined to evaluate the performance of the detection algorithm. The 
response time, which is the average detection cycles of correctly detected malicious 
nodes, shows how fast malicious nodes can be detected. The detection ratio, which is the 
ratio of the number of detected malicious nodes to the number of total malicious nodes, 
indicates the effectiveness of our algorithm. The third one is misdetection ratio, which is 
the ratio of misdetected nodes to all detected nodes including correctly detected and 
misdetected nodes. Note that these misdetected nodes actually consist of two categories: 
normal nodes being treated as malicious ones and malicious node being treated as  
normal nodes.  
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Figure 4 An example of sensor node deployment in the simulation (see online version  
for colours) 

For such a malicious node detection algorithm, short response time, high detection ratio 
are desired as well as a low misdetection ratio. In the following sections, we will study 
the impact of several key parameters used in the algorithm, and investigate the scalability 
and robustness of the algorithm. 

4.2 Weight penalty 

The first simulation was conducted to explore an optimal weight penalty value for the 
detection algorithm. The attack and alarm probabilities are both set to 0.04. The number 
of cycles between normal nodes start and stop sending alarms is 10. A threshold (0.4) is 
also set for malicious node detection as mentioned in Section 3.2. The weight recovery 
mechanism is not employed in this simulation for convenience. 

Figure 5 shows the results with weight penalty value varying from 0.02 to 1.0 in 100 
and 400 SNs cases. The larger weight penalty value results in a shorter response time, 
and a slightly better detection ratio. Intuitively the penalty value reveals the sensitivity of 
our detection results against the variation in reported data. For instance, when a large 
value is chosen (θ = 0.1), the algorithm is able to detect malicious node twice faster and 
approximately 10% more accurately comparing to using θ = 0.05. However, such a  
fast response is achieved with the cost of high misdetection ratio. The misdetection  
ratio increases as weight penalty increasing, especially after the penalty becomes 0.08 
and greater.  

These results have verified the tradeoff between detection performance and 
misdetection ratio, and shown that the penalty weight value need to be adjusted according 
to the requirements in different applications. Considering these factors comprehensively, 
we used 0.1 as the weight penalty in the following experiments. 
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Figure 5 Detection accuracies (top) and response time (bottom) with various weight penalty 

values (see online version for colours) 
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4.3 Weight value recovery 

Then, we incorporated the weight recovery mechanism in the detection algorithm, and 
evaluated its performance with variant selections of the weight recovery rate and 
recovery time. 

The detection ratios and response times obtained with 1-cycle and 5-cycle recovery 
time are shown in Figure 6. The weight recovery rate was chosen from 0.02 to 1. For the 
1-cycle recovery time case, larger weight recovery rate shows slightly better performance 
as a little higher detection and lower misdetection ratios obtained However, a long 
response time is required when large recovery rate is used. In the case of 5-cycle recovery 
time, the similar trend is observed. There is no big difference in the detection rate and 
response time between the 1-cycle and 5-cycle cases, but the average misdetection ratio 
using 5-cycle recovery time is approximately 10% higher than that using 1-cycle. 
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Figure 6 Detection accuracies (top) and response time (bottom) under different weight recovery 
rates (see online version for colours) 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.02 0.04 0.05 0.08 0.1 0.15 0.2 0.4 0.5 1
Weight Recovery Rate

R
at

io

Detect (th=1)
Detect (th=5)
Misdetect (th=1)
Misdetect (th=5)

  

0

1

2

3

4

5

6

7

8

0.02 0.04 0.05 0.08 0.1 0.15 0.2 0.4 0.5 1
Weight Recovery Rate

C
yc

le
s

Response (th=1)

Response (th=5)

 

These results imply that large weight recovery rate and short recovery time can achieve 
overall good performance for the weight recovery mechanism. Note that this simulation 
is based on the assumption that the malicious node keeps reporting wrong information 
once compromised, thus the weights of malicious nodes are not merely increased by the 
recovery mechanism. If malicious nodes send wrong information intermittently, it is 
empirically shown that a moderate recovery rate and long recovery time can be used to 
avoid weight recovery on malicious nodes. For this reason, in the following experiments 
we chosen an intermediate value (0.1) as the weight recovery rate and 1 cycle as the 
recovery time. 
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4.4 Scalability 

We further evaluated the scalability of the algorithm with various numbers of nodes. 
Figure 7 shows the results of the algorithm varying the number of nodes from 9 to 900. 
The results of the algorithm without weight recovery mechanism are also presented for 
comparison. Other parameters including the attack and alarm probabilities are the same 
as those used in the experiments of Section 4.2.  

Figure 7 Detection accuracies (top) and response time (bottom) with various numbers of sensor 
nodes (see online version for colours)  
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Note: (R) indicates the algorithm with the weight value recovery mechanism. 

The response time, detection, and misdetection ratios are stable while the number of 
nodes are increased from 9 to 900, particularly when the number of nodes is greater than 
100. These results indicate that the WTE based detection algorithm has good scalability 
as it works well under variant network sizes without large performance degradation. 
Especially if the size of network becomes large enough, For instance, greater than 225, 
the network size almost has no influence on the performance. 
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Compared with the one without the weight recovery mechanism employed, the 
algorithm incorporating the recovery mechanism has overall higher detection ratio and 
much lower misdetection ratio, with about 0.5 down in the misdetection ratio. These 
results well demonstrate the effectiveness of the recovery mechanism. 

4.5 Robustness 

Finally, the performance at various attack probabilities was evaluated for 100 nodes case. 
Similarly, the two cases: with and without the weight recovery mechanism, are both 
investigated. Figure 8 shows the evaluation results including the response time, detection, 
and misdetection ratios. As mentioned previously, the detection is terminated when more 
than 25% of the total nodes are detected as malicious nodes. The attack probability 
actually is the ratio of the malicious node out of 25% of the total number of nodes. 

Figure 8 Detection accuracies (top) and response time (bottom) with various different attack 
probabilities (see online version for colours) 
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Note: (R) indicates the algorithm with the weight value recovery mechanism. 
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The increasing attack probability means that there are more nodes being compromised 
and falsified data are inserted. While there are only small changes observed in detection 
ratios, the misdetection ratio decreases largely as the growth of the attack probability. 
This is partially due to the detection become relatively easy, or the misdetection hardly 
occurs when a large number of malicious nodes existing. The response time slightly 
increases with attack probability increasing because as more malicious nodes appear, the 
aggregated data is affected more by the falsified data.  

Similar to what reported in the previous section, the algorithm with the recovery 
mechanism incorporated shows higher detection ratio and significant lower misdetection 
ratio, verifying again that the recovery mechanism is able to largely improve the overall 
performance of the algorithm.  

As the results reported above, although the performance of the detection algorithm is 
largely depending on the setting of parameter values, the response time, detection, and 
misdetection ratios are promising with optimal settings, especially in the cases a large 
number (for instance, more than 100) of nodes deployed in the group under the same 
FNs. The results also demonstrate that the proposed WET based detection algorithm is 
effective for both large networks and high attack probability conditions. Moreover, the 
recovery mechanism could largely reduce the misdetection ratio without any negative 
effects on the detection ratio and response time. 

5 Conclusions 

In this paper, we proposed a novel WTE based algorithm for the detection of malicious 
SNs in WSNs. The basic idea is that a weight representing the reliability of a node is 
assigned to each SN in the cluster under a FN. Since malicious nodes usually report 
falsified information to disrupt the network, if a node sends incorrect information, the FN 
gradually decreases the weight of the node and detect the node as a malicious node when 
its weight value becomes lower than a threshold. In addition, a weight recovery 
mechanism is incorporated in the algorithm to recover the weight of a node whose weight 
is accidentally decreased. 

The simulation experimental results have shown that the WTE algorithm is a 
promising solution to address the malicious nodes detection problem in WSNs. It 
achieves good scalability with reasonable detection delay, and is applicable to variant 
numbers of SNs deployed under the control of a FN, thus suitable to a flexible node 
deployment in WSNs. Note that the size of a cluster under a FN could be adjusted by 
setting more and less FNs for a WSN with fixed size. Essentially, it could be treated as a 
node-clustering problem. In the robustness simulation regarding attack probability, the 
algorithm also shows effectiveness when the network is exposed to a heavy attack 
conditions. In both scalability and robustness simulations, the misdetection ratios in these 
cases could be largely reduced by introducing the weight recover mechanism.  

Although there are several other research works addressing the malicious node 
detection problem in WSNs reported, it is difficult to compare the performance  
between each other. As introduced in Section 2, the design assumptions and the 
experiment environments are very different. Particularly, lack of a widely recognised 
benchmark makes it meaningless to compare the results, for example, the definition of 
detection ratio.  
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The proposed algorithm is based on the assumption that base stations (FNs and APs) 
are points of trust. In practice, if the adversary can gain control over the base stations, it 
can launch any possible attacks against the WSN. Although this assumption is an 
interesting issue needed to be further discussed, it is beyond the scope of this paper. 
Another critical assumption is that the majority of the SNs are working properly. If the 
number of compromised nodes exceeds the number of normal nodes, normal nodes could 
be reported as malicious ones and malicious nodes are treated nice ones.  

In this paper we reported merely some preliminary results, which verified the 
correctness and effectiveness of our solution. More detailed analysis regarding the 
performance of our algorithm needs to be studied in the ongoing research and more 
questions to be answered. In our progressive efforts, we are studying the deployment of 
FNs and the influence of different densities of FNs on the performance. In addition, apart 
from the simulation, we are setting up a physical testbed consisting of more than 64 SNs. 
That may allow us to investigate the differences between the simulation experiments and 
what happens in real world when ‘real’ physical nodes are in use. 
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