5.1 Simulation for Design Verification 85

exhaustive and, therefore, a guarantee of conformance to specification is impossible.
Such a guarantee is possible with a formal verification method [380], which math-
ematically proves the correctness of the design. A restricted form of formal verifi-
cation, known as model checking [168, 453], verifies finite state concurrent systems
by an exhaustive search of the state-space. It verifies whether a given specifica-
tion is true. According to Clarke et al. [168], an efficiently implemented model
checking procedure will always terminate with a yes/no answer and can be run on
moderate-sized machines, though not on an average desktop computer. Thus, the
high complexity of formal methods allows their use only at the higher behavior level.
In spite of the incompleteness, simulation provides a better check on the manufac-
turability of the design. An ideal system of design verification should combine the
behavior-level formal verification with the logic and circuit-level simulation.

Example 5.1 Simulating an adder circuit: Consider a combinational logic circuit
designed to add two 32-bit binary integers. This circuit has 64 binary inputs and
33 outputs. To completely verify the correctness of the implemented logic, we must
stimulate 2% input vectors and check that each produces the correct sum output.
This circuit may have about 200 gates and a fast logic simulator may require 1ps to
stmulate one vector. The time required to complete the simulation is:

264 % 1076
3600 x 24 x 365

=2 584,942 years

This is clearly tmpractical. So, the designer must simulate some selected vectors.
For example, one may add pairs of integers where both are non-zero, one is zero, and
both are zero. Then add a large number of (say, 10°) randomly generated integer-
pairs. Such heuristics, though they seem arbitrary, can effectively find many possible
errors in the designed logic. The next example illustrates a rather simple heuristic.

Example 5.2 Design verification heuristic for a ripple-carry adder: Figure 5.2
shows the logic design of an adder circuit. The basic building block in this design is
a full-adder that adds two data bits, A, and B,,, and one carry bit, C,,, to produce
sum and carry outputs, S,, and C, 11, respectively. For logic verification, one possible
strateqy is to select a set of vectors that will apply all possible inputs to each full-
adder block. For example, if we set Ag = By = 0 and apply all four combinations
(00, 01, 10, 11) to Ay and By, and then set Ag = By = 1 and again apply the four
combinations to Ay and By, these eight vectors include all eight inputs for the FFAl
block. Logic simulation of these vectors will thoroughly check F AL, since the states
of both outputs Sy and C5 are provided by the simulator. One significant advantage
of simulation is that all internal signals of the circuit can be examined. This reduces
the complexity of verification. Table 5.1 gives a sel of eight vectors for verifying
a 4-bit ripple-carry adder. Interestingly, the regular pattern in each vector allows
us to expand the width of the vector, without increasing the number of vectors, for
applying this heuristic to an adder of arbitrarily large size.



