Table 10.8: Significant DSP-based analog ATE matrix operations.

Description	LTX Cadence code
Matrix add/subtract	$R = D \pm U$
Root mean square	V = rms(X)
Integer-floating conversion	K = integer (S)
Boolean logic operations	L = J xor K
Set all matrix elements to	X = 1.026
a constant 1.026	X = 1.020
Adding a constant 1.026 to	W = 1.026 + W
all matrix elements	W - 1.020 + W
Indexing operations – Sum	S = sum (X [31:220])
of 31st to 220th positions	5 - Sum (x [51.220])
Fourier voltmeter	Y = fvm (data, no_samples, harmonic)
Returns a 2-element array containing the cosine and sine of the <i>harmonic</i> of the <i>data</i> containing <i>no_samples</i>	
Discrete Fourier transform	Y = dft (result, samples, test_tone_freq,
	sampling_freq, no_harmonics_desired)
result [1]: Total signal RMS $\times \sqrt{2}$	
result [2]: Non-harmonic RMS $\times \sqrt{2}$	
result [3]: DC Voltage	
result [4]: Peak Amplitude 1st harmonic of test tone F_t	
result [5]: Peak Amplitude sine of 1st harmonic	
result [6]: Peak Amplitude cosine of 1st harmonic	
result [7]: Peak Amplitude 2nd harmonic of test tone F_t	
result [8]: Peak Amplitude sine of 2nd harmonic	
result [9]: Peak Amplitude cosine of 2nd harmonic	
Fast Fourier transform freq_domain = fft (time_domain)	
freq_domain [1]: DC component of time_domain	
freq_domain [2]: cosine component at frequency $F_s/2$ of time_domain	
freq_domain [3]: cosine component of multiples of Δ of time_domain	
freq_domain [4]: sine component of multiples of Δ of time_domain	
Inverse FFT	T = inverse_fft (F)
Magnitude	$Y = \text{mag_fft} (X)$
Power spectrum	power_results = power_fft (time_domain)
Phase	polar_coord = polar (fft (samples))
Converts an array of cosine-sine pairs into amplitude-angle data	
μ-law CODEC encoding	array1 = mucode (array2)
μ-law CODEC decoding	array1 = mudec (array2)
A-law CODEC encoding	array1 = acode (array2)
A-law CODEC decoding	array1 = adec (array2)
Normalized correlation	<pre>I = correlation (samples_1, samples_2)</pre>