

Figure 9.34: RAM system organization.

	Method:
1.	Zero out memory.
2.	Increase the power supply above V_{CC} in steps of 0.01 V. For each voltage
	setting, read the memory. Stop as soon as a 1 is read from any location, and
	record this supply voltage as V_{high} .
3.	Fill the memory with 1s.
4.	Slowly decrease the supply below V_{CC} in steps of 0.01 V. For each setting,
	read the memory. Stop as soon as a 0 is read from any location, and record
	this supply voltage as V_{low} .
	Possible test outcomes:
1.	V_{high} and V_{low} are inconsistent with data book values (fails.)

DC parametric tests are simple and inexpensive, and measure worst case loading. They are inadequate as functional or timing tests, and only test a few devices connected to the terminals, leaving the rest of the chip untested.

Leakage Test. This finds the worst case input leakage current (*input leakage*) or tristated output leakage current (*tristated leakage*.)