236 Chapter 8. SEQUENTIAL CIRCUIT TEST GENERATION

Pl vector k-1 Pl vector k

Feedback ; ; ; ; ;

set—! c I~ ¢c — ¢c — ¢c— crH—~ ¢ — Cc — Cc —
EMC

PPI—s]{ (CK) FMCK FMCK FMCK (CK) FMCK FMCK FMCK
PPO r r r PPO r r r

Asynchronous signal stabilization Asynchronous signal stabilization
PO k-1 PO k

Figure 8.19: Two-phase time-frame expansion for asynchronous circuits.

R s-a-0

0+>0-+>1-»>1

S-

QO
@
xg

a-1
1»X>1+1
A

s-a-0
0+>X*0-+0
1+0>1> OS_ _._D_)(E
s-a-0
d D—C 1+0+1+1

Figure 8.20: An asynchronous circuit for test generation.

2. Fast modeling clock (FMCK) phase. Following the system clock phase, which
provides new inputs to the combinational logic, a series of “fast” time-frames
exercise the logic until signals become stable. For practical reasons, a small
fixed number of time-frames is used (three in Figure 8.19.) If some signal does
not become stable, then an oscillation can be assumed and that signal is set
to the unknown state. During this phase, the primary inputs and the clocked
flip-flop states are held without change, and no primary output is examined
for fault detection.

Thus, each input vector produces a new set of PPO and asynchronous states
(feedback signal states.) In a simplified version of asynchronous circuit test gener-
ation, we ignore the feedback states. Each input vector then begins with feedback
signals in the unknown states. The test generator favors those primary input values
that uniquely determine the feedback signals. For example, for the NOR latch of
Figure 8.16(b), inputs 01 and 10 will be favored. Also, the loops are preprocessed
and a sensitization value set, i.e., a set of signal values that sensitize a path around
the loop, is generated for each loop. For example, the sensitization set for the NOR
latch of Figure 8.16(b) is S = R = 0. Then, whenever the signal states coincide with
the sensitization set, outputs of all gates in the loop are set to X. This approach
avoids any oscillatory evaluation of signals. However, the conservatism prevents the
generation of tests where asynchronous states are essential. This approach is used
in GENTEST [72], as the next example illustrates.

Example 8.7 Consider the asynchronous circuit shown in Figure 8.20. We will
discuss test generation by the memory-less model. The feedback set is (Q,Q). The
loop sensitization condition is R = S = 0. Thus, whenever this signal combination

8.2 Time-Frame Expansion Method 237

occurs, the test generator sets the feedback set to the unknown state, Q = Q = X.
Gentest [72] produced the following result on a SUN Sparc 2 workstation:

Primary inputs = 2

Primary outputs = 3

State elements = 0O

Total Faults = 23

test generation time = 33 ms

fault simulation time = 16 ms

total vectors = 4

detected faults = 15

untestable faults 8

undetected faults 0

0 untestable faults were potentially detected
0 undetected faults were potentially detected
faults tried = 12

time limit per fault = 0.8 ms

fault coverage = 65.2}

The four test vectors, corresponding outputs, and eight untestable faults are shown
in Figure 8.20. We make several observations:

o Not all faults identified as untestable are really untestable. They are really
untestable by a single-vector test, which is a limitation of the combinational
model. For example, the s-a-0 fault on the @ input of the OR gate A is
testable by two vectors, (S,R) = (1,0), (0,0). Still, there are several faults that
are either not detectable even by multiple vector tests, or can only be detected
potentially or as race faults. A generally low fault coverage is quite typical of
asynchronous circuits.

e Fortunately, the generated test sequence does not cause a race condition in the
Sfault-free circuit, which is a requirement for useful tests but is not imposed
by the test generator. For example, if we generate tests with the fault list
ordered as “C' s-a-07 followed by “s-a-0 on S input of A,” then the two tests
S =R =0and S = R = 1, applied in that order, will produce a race in
the NOR latch in the fault-free circuit. If the asynchronous logic is embedded
in a sequential circuit, the ordering of vectors cannot be arbitrarily changed.
Such race conditions should be found by a simulator and the vectors causing
them should be discarded or modified. Alternatively, the test generator should
recognize the race producing sequences and generate alternative tests.

Asynchronous circuits continue to be difficult to test. Tools and techniques are
only adequate for small circuits. The typical situation often encountered involves
large synchronous circuits with a small amount of asynchronous circuitry embed-
ded in the combinational logic. In addition, tests for faults in the clock circuitry
require asynchronous techniques. The major difficulty of finding good tests for asyn-
chronous circuits arises due to the inadequate treatment of delays. Analysis of races

238 Chapter 8. SEQUENTIAL CIRCUIT TEST GENERATION

and hazards can improve the tests, but requires additional computation [96, 141].
Determining the steady-state without the complete delay information can be trou-
blesome, too. A recent method gives specific attention to the time-frames used for
signal stabilization [64]. Finally, when it comes to handling of delays, logic simu-
lators are more advanced than test generators and the early proposal of Seshu and
Freeman [587] for simulation-based test generation is still attractive.

8.3 Simulation-Based Sequential Circuit ATPG

The application of a fault simulator for test generation was suggested by Seshu
and Freeman in the early 1960s [587]. They used a compiled-code simulator and
the faults were serially injected. Random vectors were used in the 1970s with fault
simulation to select only those vectors that increased the fault coverage [26]. While
this strategy was quite successful with some combinational circuits, for hard to test
circuits it had to be backed up with algorithmic (non-random) vectors. Breuer [89]
devised a simulation-based method for sequential circuits. In his method, several
randomly generated vectors were simulated for some “present state” of the circuit
and the best vector (according to specified criteria) was included in the test sequence.
The circuit state was then advanced before simulating a new set or random vectors.
Schuler et al. [573] were the first to use a concurrent fault simulator (CFS) for test
generation. They simulated a set of random vectors. Each vector was simulated for
the same given starting state of the circuit. The vector that detected the largest
number of faults was selected. The states of the good and all faulty circuits were
changed corresponding to the selected vector. The test generator then advanced
to the selection of the next vector from a new set of random vectors. Parker [508]
reported an adaptive method of making the random vector source circuit-specific.

One of the greatest advantages of these methods is that before a vector is selected
as a test, it is simulated. As an event-driven simulator analyzes both logic and timing
behavior of the circuit, the selected vector is guaranteed to be free from harmful
races or hazards. Many other test generators completely neglect timing information
and produce hazardous tests.

Several observations were made by Schuler et al. [573]. They experienced a se-
rious shortage of available memory required to simulate a large number of faults.
They suggested using a small subset of faults. However, the problem of finding a
proper subset had no existing solution. They also reported that for a given comput-
ing time, the fault coverage remained somewhat low unless extra observation points
were inserted in the circuit. Their circuits contained up to 1,000 gates and were
small by today’s standard.

The problem of low fault coverage when no extra observation points are inserted
has been reported by other workers as well [343, 361]. These authors did not use
CFS. However, the difficulty lies not in the simulation algorithm, but in the way
vectors are selected. The vector that detects either the target fault or the largest
number of faults at primary outputs is the natural choice. When the faults are
very difficult to detect, none of the trial vectors may detect anything. Selection of

8.3 Simulation-Based Sequential Circuit ATPG 239

a test vector from a reasonable number of random vectors is very inefficient in this
situation. Also, when the circuit is sequential, not every test vector may produce a
fault effect at primary outputs. In general, several vectors are required to bring the
circuit to a state such that the fault can be activated. Again, several vectors may be
needed to propagate the effect of the fault to a primary output. Thus, a test for a
fault may consist of a sequence of vectors where only the last vector produces a fault
effect at a primary output. Generation of such a sequence is highly improbable by a
process that only considers single vectors and relies on fault detection information at
primary outputs. Output observation can produce better results if vector sequences,
like those produced by a genetic algorithm, are used instead of single vectors (see
Subsection 8.3.2.)

The above observations motivated further exploration. A fault simulator com-
putes the fault activity at all internal nodes of the circuit. This information is
frequently ignored since we use the simulator only to gather fault detection data.
Takamatsu and Kinoshita [649] have used CFS for generating tests for combina-
tional circuits. They use the test generation algorithm, PODEM (see Chapter 7),
to generate a test for some target fault. PODEM involves a series of backtrace and
forward implication operations. The backtrace determines a value for some primary
input to accomplish some objective like fault activation or fault propagation. For-
ward implication ascertains that the input value determined by the backtrace does
not contradict the objective. In case of a contradiction, the input value must be
changed via backtracks. For an algorithm like PODEM, which enumerates primary
input values until a test is found, the CPU time of test generation largely depends
upon the number of backtracks. Takamatsu and Kinoshita find that a backtrack
can often be avoided by changing the target fault. In their CONT-2 algorithm, the
forward implication is similar to CFS. Thus, fault activity information about all un-
detected faults is available. When a contradiction occurs, CONT-2 will abandon the
current target fault and select some other target fault that has a greater chance of
being detected. The new target can be a fault that is already active and whose effect
is present at some signal close to a primary output. PODEM and CONT-2, which is
based on PODEM, are test generation algorithms applicable only to combinational
circuits.

The CONTEST algorithm, devised by Agrawal, Cheng, and Agrawal [31, 153],
uses a directed-search approach for generating tests for sequential circuits. This
algorithm works in a closely knit fashion with CFS. The basic idea is to obtain test
vectors by successive modification of primary input bits based upon cost functions
that are computed by the simulator. More advanced test generators use genetic
algorithms [445].

8.3.1 CONTEST Algorithm

The test generation process can be subdivided into three phases. In Phase 1
initialization vectors are generated. The purpose of these vectors is to bring flip-
flops in the circuit to known states irrespective of their starting state. Phase 2
begins with vectors that are either supplied by the designer or generated in Phase

240 Chapter 8. SEQUENTIAL CIRCUIT TEST GENERATION

1. A fault list is generated in the conventional manner. For example, this list may
contain all single stuck faults or a subset of such faults. These faults are simulated
using a fault simulator. If the coverage is adequate, the test generation would stop.
Otherwise, tests are generated with all undetected faults as targets. In the initial
stages of test generation, the fault list is usually long and the objective of this phase
is to generate tests by concurrently targeting all undetected faults. At the end of
Phase 2, if the fault coverage has not reached the required level then Phase 3 is
initiated. In this phase, test vectors are generated for single faults targeted one at
a time.

Phase 1: Initialization. Here, the cost is defined simply as the number of flip-
flops that are in the unknown state. Initially, the cost may be equal to the number of
flip-flops in the circuit. The goal in the initialization phase is to reduce this cost to
0. This cost function is derived only from good circuit simulation and is not related
to the faulty circuit behavior. If the circuit is hard to initialize, one may relax the
criterion for exiting to the next phase by allowing a small number of flip-flops, say
10%, to remain uninitialized.

Using this cost function, the circuit is driven to the easiest initialized state
instead of any specified state. All flip-flops are assumed to be in the unknown state
at the beginning and the cost function is equal to the number of flip-flops in the
circuit. Before applying a trial vector, signal states are saved for restoration in case
the trial vector is not accepted. To start the process, any trial vector (a randomly
generated or user-supplied vector) can be used. This is called the “current vector.”
Subsequent trial vectors are generated by changing the bits of the current vector.
The integer n is used to denote the bit position in the current vector that is changed.
The clock bits (only in the synchronous mode) are treated separately. The user
specifies the clock sequence. During simulation, the input data bits are kept fixed
whenever the given clock sequence is applied. In combinational or asynchronous
sequential circuits, all input bits are treated as data.

After simulation of a trial vector, the “trial cost” is computed as the number of
flip-flops that are in the unknown state. If the trial cost is lower than the current
cost, then the trial vector is saved. If the trial cost is zero, then the initialization
phase is complete. Otherwise, the current cost is updated, signal states are saved,
the accepted trial vector becomes the current vector, n is set to 1, a new trial
vector is generated by changing the nth data bit, and the process of simulation, cost
calculation, etc., is repeated.

A trial vector is not accepted as an initialization vector if the corresponding trial
cost is not lower than the current cost. In that case, the bit number n is advanced
and the process is repeated with a new trial vector. When all bits of a current vector
have been changed without lowering of the cost, this process will stop, indicating that
initialization is impossible with this scheme, i.e., a local cost minimum is reached.
One possible strategy is to restart with a new randomly-selected current vector.

Phase 2: Concurrent fault detection. The initialization vectors may already have
detected some faults. Some others may have been activated but not detected. As
a result, effects of active faults will be present at internal nodes of the circuit. For

8.3 Simulation-Based Sequential Circuit ATPG 241

s-a-1 Trial 0 1 0 0
E vectors 0 0 11
S+D—L 0 0 0 1
) g Fadlty A - EF

c / signal
Cost 2 0 1 0

Figure 8.21: An example of the distance cost function used in Phase 2.

an active fault, a suitable cost function is the shortest distance to a primary output
from any fault effect caused by the fault. The distance here is simply the number
of logic gates on the path. The smaller this cost, the closer the fault is to being
detected. When a fault is detected, its cost will be zero. The objective in test
generation is to reduce the cost by propagating the fault effect forward, gate by
gate, until it reaches a primary output. If the fault is not activated, i.e., no fault
effect is present anywhere in the circuit, then the cost is defined as infinite.

Figure 8.21 gives a simple example to illustrate how the distance cost function
works. The given fault is signal A stuck-at-1 and the initial vector is 000. The fault
effect appears at signal A; thus, initial cost is 2. After simulating three trial vectors,
the search terminates and a test is found.

When there are several undetected faults, cost € is computed for each fault @
for some input vector and internal state. Similarly, the cost C”; is obtained for a
candidate trial vector. A comparison of C; and C/; determines whether to accept the
candidate vector or reject it. Since there can be several undetected faults, there are
two [ists of cost functions instead of just two numbers. The search for tests should
be guided by a group of faults instead of a single target fault. One can devise simple
rules to determine the acceptance of a vector. For example, if the combined cost of
10% of the lowest-cost undetected faults is found to decrease, then the new vector
may be accepted. Experience has shown that for many circuits, the test vectors for
all stuck-at faults are usually clustered instead of being evenly distributed in the
input vector space. Figure 8.22 shows the input vector space with dots representing
tests for undetected faults from the fault list. In the beginning there are many
undetected faults and the vector space may have large clusters of tests as shown
in Figure 8.22(a). Starting at any initial vector A, the cost function will steer the
search toward large clusters. When only a few faults are left, their tests will be a
few isolated vectors. In Figure 8.22(b), test generation in Phase 2 has followed the
path from A to B. At B, the combined cost provides very little “direction.” Hence,
a single target fault strategy may be needed.

If flip-flops are modeled as functional primitives, they may be treated differently
from individual gates such as AND or OR. Propagating a fault through a gate only
needs setting appropriate values at the inputs of the gate. In contrast, propagation
through a flip-flop requires first setting the appropriate value at its data input and
then activating the clock signal. In cost computation, therefore, a large constant,
say 100, is assigned to a flip-flop as its distance contribution.

Phase 2 begins with fault simulation of initialization vectors. The faults thus

242 Chapter 8. SEQUENTIAL CIRCUIT TEST GENERATION

o0
o. .o * L4
o3
[] ° ...
A
L4 ®
L)
° %o :
e o0 0
(a) Many undetected faults. (b) Few undetected faults.

Figure 8.22: Directed search in Phase 2 and the need for Phase 3.

detected are eliminated from consideration. Generation of trial vectors is performed
in a manner similar to the initialization phase. Costs for trial vectors are obtained
from the result of CFS. Prior to simulation, gates are levelized starting from primary
outputs. Thus the level of a gate directly gives its distance from primary outputs.
The cost of a trial vector is easily computed using the levels of the faulty circuit
gates. The concurrent phase stops when all single bit changes in a current vector
produce no cost reduction. This will normally happen when the number of faults
left in the target set is small. The test vectors for these faults sparsely populate
the vector space and, therefore, the collective cost function does not provide any
significant guidance.

Phase 3: Single fault detection. The cost function in this phase is based on a
SCOAP-like testability measure. In SCOAP (see Chapter 6), each signal is assigned
three measures, 1-controllability, 0-controllability, and observability, respectively.
All measures are integer-valued and a higher value of the measure for a signal indi-
cates that it might be difficult to control or observe. In Phase 3, testability measures
are dynamically computed. Their values depend upon the circuit structure as well
as on input vectors. The dynamic nature is essential in this application since the
measures are used to compare the suitability of vectors for detecting a target fault.

DC1(t) and DCO(2), are defined as dynamic 1 and 0 controllabilities for node .
These are related to the minimum number of primary inputs that must be changed
and the minimum number of additional vectors needed to control the value of
node ¢ to 1 or 0. The number of inputs required to be changed is further defined
as the dynamic combinational controllability (DCC) and the number of required
vectors is called the dynamic sequential controllability (DSC.) In order to keep the
test sequence short, DSC is weighted heavier than DCC. For example, DC'1(¢) and
DCO0(i) could be the weighted sums of DCC and DSC, say, DSC times 100 plus
DCC. If the current logic value of node 7 is 1, then DC1(7) is defined as:

DC1(i) vy =1 = 0 (8.1)
where V (7) is the logic value on node ¢. Similarly, if the current logic value on node
tis 0,

DCO() vy =0 = 0 (8.2)

This definition follows from the fact that no input change is needed to justify a 1(0)
on node 7 if the value is already 1 (0.) Under other conditions, DC'1(7) and DC0(z)

8.3 Simulation-Based Sequential Circuit ATPG 243

will assume nonzero values. For example, for the output line ¢ of an AND gate with
m inputs, DC1(7) and DCO(7) are computed as:

DOT) oy = 0w x = 3" DCL(E) (53
7=1
DOOG) vy — 10 = | min DCOK) (5.4

where k; is the jth input line of the gate. Here, min means the minimum of m
quantities and its use is similar to that in the SCOAP testability measures. Pri-
mary input controllabilities are set to 0 or 1 depending on their current state. As
explained, the controllability of sequential elements is weighted heavier. Dynamic
controllabilities for a flip-flop output ¢ are defined as:

DCLE) vy =00 x = DCI() + K (8.5)

DEOG) Iy = 10 x = DCO) + K (8.6)

where d is the input data signal of the flip-flop and K is a large constant, say, 100.

In order to detect a stuck fault, the test generator must first find a sequence of
vectors to activate the fault, i.e., set the appropriate value (opposite of the faulty
state) at the fault site, and then find another sequence to sensitize a path to prop-
agate the fault effect to a primary output. Thus, the cost function should reflect
the effort needed for activating and propagating the fault. The activation cost,
AC (t5_q—;) of a node i stuck-at-j fault is defined as:

AC(is_qj) = DCu(i) (8.7)

where v is 0 if node ¢ is stuck-at-1 and v is 1 if node 7 is stuck-at-0. This follows
from the consideration that the cost of activating a stuck-at-0 (stuck-at-1) fault is
the cost of setting up a 1 (0) at the fault site. The propagation cost is basically a
dynamic observability measure. For a fanout stem ¢ with n fanout branches, it is:

PC(i) = min PC(i) (8.8)

where 7; is the jth fanout branch of . For an input signal i, of an m-input AND
gate whose output signal is ¢, we have

PC(i,) = PC(») + > DC1 (i) (8.9)
1<k<m

k#a

where 7y is the kth input line of the gate. Similar formulas are easily derived for
other types of gates. The cost function for test generation for a single target fault

244 Chapter 8. SEQUENTIAL CIRCUIT TEST GENERATION

is derived from the activation cost and the propagation cost defined above. For an
undetected fault F, line ¢ stuck-at-v, that is not activated, the cost is defined as:

Cost(F) |F not activated = K1 X AC(is—q—y) + PC(i) (8.10)

where K1 is a large constant that determines the relative weighting of the two costs.
If the fault has been activated, and N is the set of the nodes where the fault effect
appears, then:

Cost(F) |F activatea = min PC(1) (8.11)

i € Np

Notice that in this cost function reconvergent fanouts are ignored. This approxi-
mation provides computational simplicity but may occasionally result in failure to
detect a fault. Once activation and propagation costs are computed for each fault
in the list, the lowest-cost fault is targeted for detection. New input vectors are cre-
ated to further lower the cost of the target fault until it is detected or the search is
abandoned due to a local cost minimum. As new vectors are added to the sequence,
CFS eliminates any other detected faults from the list. This phase ends when either
an adequate coverage is achieved or all faults that were left undetected at the end
of Phase 2 have been processed.

A program implementing the CONTEST algorithm (CONcurrent TEst generator
for Sequential circuit Testing) [31, 153] accepts a logic-level circuit description in a
hardware description language. The test generator works in two modes: synchronous
and asynchronous. In the synchronous mode, clock signals and their transition
sequence within a period must be specified. The test generator follows each change
in primary inputs by a clock sequence. In the asynchronous mode, no clock signal is
identified and the test generator treats all primary inputs alike. For circuits that are
largely synchronous with a limited amount of asynchronous circuitry, test generation
in the synchronous mode works better initially. If the coverage by this mode is
inadequate, then, for the remaining faults, asynchronous mode can be used. This
is because the speed of test generation depends upon the number of primary inputs
that must be manipulated. In the synchronous mode, clock signals are prespecified
and are not manipulated.

An optional fault list is an input to the test generator. If this is not given, the
system generates a list of collapsed single stuck-at faults. CONTEST contains an
event-driven CEFS. Race analysis in feedback structures is automatic and is performed
through special modeling features. By default, potentially detectable faults (that
produce an unknown faulty output) are considered detected. This option can be
turned off by the user. If the number of changes in a signal for the same input vector
exceeds a prespecified number, then the simulator assumes oscillation and sets the
signal to the unknown state.

In Phase 1, the user can specify the acceptable percentage of uninitialized flip-
flops. The default is 10 percent. Also, Phase 2, which normally follows Phase 1, can
be independently run if the user supplies functional vectors or initialization vectors.
Experience has shown that Phase 2 can achieve a coverage of 65 to 85 percent.
Phase 3 can also be independently run if the size of the given fault list is small.

8.3 Simulation-Based Sequential Circuit ATPG 245

[>

Figure 8.23: An asynchronous circuit for test generation by CONTEST.

Table 8.2: CONTEST results (CON: CONTEST, GEN: GENTEST.)

Fault Fault Number of VAX

Circuit data coverage eff. test 8650

(%) (%) vectors CPU s
Name | Gates | FFs | Faults [CON [GEN | GEN | CON [GEN | CON | GEN
MANNY 26 7 67 100.00 | 83.95 | 83.95 32 219 5 NA
SSE 207 6 454 83.26 | 83.20 | 99.50 561 676 291 1134
MULT4 382 15 540 97.04 | 92.78 | 93.15 364 148 838 1490
TLC 355 21 772 94.69 | 94.64 | 94.64 | 1256 5340 3312 | 32590
PLANET 690 6 1582 95.13 | 57.71 | 61.00 | 1439 132 3120 | 19388
MI 779 18 1629 94.53 NA NA 1358 NA 1261 NA
CHIP-A 1112 39 1643 93.73 | 84.11 | 88.48 | 1031 384 | 98432 NA
CHIP-B 1539 73 2533 91.28 NA NA 1034 NA 77904 NA

Example 8.8 Asynchronous circuit. Consider the circuil of Figure 8.23. This is
an asynchronous sequential circuit. Muth [481] used this example to illustrate the
necessity of a nine-value path sensitization algorithm when a test for the fault “d
stuck-at-17 is attempted. CONTEST produced four vectors: 000, 100, 101, 111.
The last two vectors are the same as given in Muth’s paper. Two extra vectors are
generated because CONTEST starts with an arbitrary 000 vector and then brings
the circuit to the appropriate state.

Some results are shown in Table 8.2 [31, 153]. The circuit MANNY is asyn-
chronous. All others are synchronous. SSE and PLANET are finite state machines
with combinational logic implemented as a programmable logic array. MI is an-
other finite state machine with random logic implementation. MULT4 is a four bit
Booth multiplier circuit synthesized by an automatic synthesis system and TLC
is a traffic light controller circuit. CHIP-A and CHIP-B are CMOS custom chips.
CHIP-B contains one asynchronous flip-flop. For comparison, the results of a time-
frame type of sequential circuit test generator (GENTEST [72]) are included in
Table 8.2, CONTEST consistently produced better fault coverage and required less
CPU time as compared to GENTEST. In some cases, due to circuit model incom-
patibilities, GENTEST aborted. The unavailable data are shown as “NA” in the
table. GENTEST was ineffective for several circuits because of their complex se-
quential structure and asynchronous behavior. In other cases, GENTEST could
identify redundant faults that were used to obtain fault efficiencies. A simulation-

246 Chapter 8. SEQUENTIAL CIRCUIT TEST GENERATION

based technique like CONTEST cannot identify redundancies and hence does not
provide the fault efficiency.

Consider the TLC Circuit to examine the run time performance of the directed-
search method. Even though there are only 21 flip-flops, it is a highly sequential
circuit with an internal counter and the ratio of logic to primary inputs is high (only
4 primary inputs.) For some faults, more than 200 vectors are needed to initialize the
circuit to appropriate states to activate and propagate the fault effects to primary
outputs. That means that more than 200 copies of the combinational portion are
created in the iterative-array model. This is one of the reasons why GENTEST
required significantly more CPU time than CONTEST for the TLC circuit.

As evident from Table 8.2, CONTEST frequently generated more vectors than
the GENTEST program. This is a consequence of the one-bit change heuristic.
In general, neighboring vectors in a CONTEST-generated sequence have fewer bit
changes than in sequences generated by GENTEST. As a result, more vectors are
needed to take the circuit to a desired state, starting from some given state. In
some cases, this may be desirable because too many simultaneous input changes
can produce hazards in the logic or produce power supply fluctuation due to current
surge. The single-bit change strategy has also been used by other workers [587]. In
general, the vector sequence length directly affects the test time and long sequences
may have to be compacted to reduce the testing cost.

When the final fault coverage is lower than the desired goal, two options are
possible. The first option is to start with a different (randomly selected) vector
and attempt generation of tests for the undetected faults. The second option is to
expand the one-bit change heuristic to include two-bit, three-bit, . . . changes. One
should, however, expect a rapid increase in the amount of computations. Lioy et al.
have taken a different trial vector approach [403]. They implemented the directed
search approach in the MOZART concurrent fault simulator [236]. When a single
vector with one-bit change does not provide cost reduction, their program examines
the cost with multiple vectors. This strategy has the advantage of being able to get
out of some local minima. They were able to obtain excellent results for some IS-
CAS ’89 sequential benchmark circuits [99]. However, their conclusion was that the
simulation-based technique was not very efficient for circuits with a complex feed-
back structure. Such structures are, in fact, known to be troublesome for other test
generation algorithms also (see Subsection 8.2.6.) Among other possible strategies
for trial vectors is the method based on genetic algorithms.

8.3.2 Genetic Algorithms

The process of test generation in CONTEST is evolutionary, in the sense that
a test sequence is evolved by accepting and rejecting vectors according to their
fault detection characteristics. Improved results are possible if trial vectors are
generated by some “learning” process. For example, we can probabilistically favor
the generation of the type of vectors that were more successful in the past. That
is the basic idea of genetic algorithms, introduced by Holland [303]. An interested
reader will also find the book by Goldberg to be useful [261]. A recent book by

8.3 Simulation-Based Sequential Circuit ATPG 247

Mazumder and Rudnick [445] discusses VLSI design and test applications of genetic
algorithms.

Test generators based on genetic algorithms resemble CONTEST in several
ways [445]. One uses the three-phase process. The cost function is replaced by
a fitness function, which is now maximized instead of being minimized. Various
types of fitness functions are computed via true-value or fault simulation. The basic
difference, however, lies in the method of generating trial vectors. The procedure
works with a set of vector sequences, called the population, which is improved iter-
atively. Each iteration is called a new generation. Vectors of a generation are pro-
duced from those of the previous generation, using operations known as crossover,
mutation, and selection. In crossover bits from two vectors of the old generation are
combined to construct two vectors for the new generation. In mutation, bits of a
vector from the old generation are manipulated to create a vector for the new gen-
eration. In selection two individuals are selected, with selection biased toward more
highly fit individuals. The fitness of the new generation is evaluated by simulation
of the required characteristics such as initialization or fault detection. Creation of
vectors in later generations is biased toward higher fitness.

One of the earliest simulation-based programs that used genetic algorithms (GA)
was CRIS [556]. A simple fitness function, evaluated from true-value simulation, was
used. It would favor those vector sequences that increased the signal activity in the
circuit. This program had only limited success, perhaps because increased signal
activity only improves controllability but does not necessarily increase observability.
A later version of the program included fault simulation. Another program used
adaptive GA [631]. Here, crossover and mutation probabilities were dynamically
reduced for more fit individuals. The authors showed advantages of the adaptive
scheme though their implementation was only for combinational circuits.

Compared to the early versions, significantly improved results were achieved by
the GATEST program developed by Rudnick et al. [553]. In that program accu-
rate fault simulation data was used for evaluating the fitness function. In a GA
framework, new populations via crossover, mutation, and selection can be very
quickly generated. However, fault simulation of large populations consumes enor-
mous computing resources. GATEST simulates 100 to 300 randomly sampled faults
to compute the fitness. These strategies worked well and the results compared favor-
ably with the time-frame expansion program HITEC. GATEST used less CPU time
than HITEC, produced shorter test sequences and sometimes (though not always)
obtained higher fault coverages. More importantly, the results established the prac-
ticality of GA-based test generation and showed the necessity of fault simulation for
fitness assessment.

Another recent program, GATTO [174], targets one single fault at a time. The
circuit is assumed to be already initialized and a target fault is chosen from among
those already active. The GA then generates vectors to propagate the fault effect
toward POs.

Several strategies of the previous programs are combined in the STRATEGATE
program developed by Hsiao et al. [310, 311]. This program uses GA in multiple

248 Chapter 8. SEQUENTIAL CIRCUIT TEST GENERATION

Table 8.3: Sequential ATPG by STRATEGATE [311].

Circuit | Number of faults | Fault | Number of | HP J200 (256MB)
name total | detected | coverage vectors CPU time
s1423 | 1515 | 1414 | 93.3% 3,943 1.3 hours
sH378 4,603 3,639 79.1% 11,571 37.8 hours
$35932 | 39,094 | 35,100 89.8% 257 10.2 hours

phases to activate the fault in the combinational circuit (time-frame 0), justify the
required state through previous time-frames, and propagate the fault effect through
later time-frames. Table 8.3 shows a sample of results obtained for three benchmark
circuits by STRATEGATE on a HP J200 computer with 256 MB RAM. The test
generator starts with the circuit in a completely unknown state. Only coverages are
given since the simulation-based ATPG cannot identify redundant faults. Although
CPU times are large, the fault coverages are significantly higher than those reported
for time-frame expansion programs such as GENTEST [72, 160] and HITEC [497].
The reader may compare the result for the circuit 835932 in Table 8.3 with that
obtained by GENTEST in Section 8.2.4.

Years of research on genetic algorithms for sequential ATPG has produced some
highly improved programs. In the true sense of the word, this evolution will continue
and more improvements may be forthcoming. Similarly, the quest for improved
implementations of time-frame expansion algorithms also continues.

8.4 Summary

Sequential ATPG is practical for arbitrarily large circuits with adequate testabil-
ity properties such as good initializability and cycle-free or limited-cycle structure.
The University of Illinois program, HITEC [497], has been the basis for a commer-
cial ATPG system, available for several years. GENTEST [72, 160] has been used
within Lucent Technologies. At least two other sequential ATPG systems have been
in use at IBM and NEC, respectively. IBM’s program incorporates sophisticated
branch and bound techniques originally developed at Rutgers University [150]. It
has been used to generate tests for their partial scan microprocessor [151]. It is
also commercially available to the users of IBM’s TestBench system. NEC’s pro-
gram, SATURN [120], is based on various neural network and graph theoretic algo-
rithms [127], and has been used within the company to generate tests for VLSI chip
sets containing several million transistors. These programs employ the time-frame
expansion technique.

In view of the large CPU times required for sequential ATPG, multi-processing
has been explored. A popular technique is to distribute the fault list over a net-
work of workstations that independently generate tests. This procedure is known as
Sfault-parallelism. The inter-processor communication is minimized by only sharing
the generated tests [63]. Significant speedups have been reported for the GEN-

Problems 249

TEST [603] and ESSENTIAL [369] programs. Interestingly, in cases where the
detection of hard-to-detect faults is strongly influenced by the circuit state, even
superlinear speedup is possible [18]. Superlinear speed up refers to the speed up of
the program by a factor greater than the number of processors used. Sienicki [603]
has analyzed the conditions for such speed up and has given adaptive techniques to
obtain the best advantage of parallelization. Krauss et al. [370], using a distributed
system of 100 workstations, first divide the fault list among workstations. When only
the hard-to-detect faults are left over, they use several processors to cooperatively
explore the vector space for tests targeting one fault at a time. This procedure is
known as search-space parallelism. They observed speed ups between 42 and 92 for
various circuits. They also reported that parallelization of test generation produced
more vectors, which had to be compacted.

Simulation-based methods of test generation derive their efficiency from fault
simulators such as a concurrent fault simulator (CFS.) Since the selection of a test
vector depends upon the cost comparison, several trial vectors have to be simu-
lated before a decision is made. A CFS implementation simulates the trial vectors
in series. A more efficient implementation will be to use MDCCS (multi-domain
concurrent and comparative simulation) [684] such that costs for many trial vec-
tors are concurrently evaluated. The simulation-based method is applicable to all
types of circuits, combinational or sequential. Its best advantage is in sequential,
particularly asynchronous, circuits. In such circuits, timing of signals cannot be ne-
glected and, therefore, the time-frame expansion methods run into difficulties (see
Subsection 8.2.9.) With the simulation-based method, any circuit that can be sim-
ulated, can be tested. Among simulation-based techniques genetic algorithms have
produced the best results.

Problems

8.1 Race condition. Suppose that all gates in the flip-flop circuit of Figure 8.2 have
one unit of delay. Analyze all signal waveforms when a falling transition at D
and a rising transition at C'K occur, simultaneously. What timing condition
should data (D) and clock (C'K) signals satisfy for race-free operation?

8.2 Show that a test for any fault on the primary output of the serial adder circuit
of Figure 8.3 can be obtained with at most two time-frames. [Hint: Note
that the primary output fault does not interfere with the initialization for the
flip-flop which can be set in either 0 or 1 state by a single vector.

8.3 Show that any single stuck-at fault on primary inputs of the circuit in Fig-
ure 8.3 can be detected by two vectors when the initial state of the flip-flop is
unknown.

8.4 Determine a test sequence for the s-a-0 fault on the output line of the flip-flop
in the circuit of Figure 8.3.

250 Chapter 8. SEQUENTIAL CIRCUIT TEST GENERATION

8.5 Show that a test for the fault A s-a-0 in the circuit of Figure 8.24 cannot be
obtained using the five-valued logic of the D-calculus. Obtain a test for this
fault using the nine-valued logic.

Flip-
flop

A : B
s-a-0

Figure 8.24: Circuit for Problem 8.5.

8.6 Initialization fault. Derive a test for the A s-a-1 fault in the circuit of Fig-
ure 8.25. Does the test provide a definite or a potential detection?

s-a-1 oq

A

Flip- C
flop

B

Figure 8.25: Circuit for Problems 8.6 and 8.7.

8.7 Devise a multiple observation test for the fault shown in Figure 8.25. Is a
multiple observation test still possible if the inverter in the feedback path was
shorted?

8.8 Compute drivabilities for all lines in the circuit of Figure 8.9 for the fault B
s-a-0.

8.9 Approximate test. The single clock synchronous sequential circuit in Fig-
ure 8.26(a) has two inputs CLR and A. CLR = 1 initializes the flip-flop
to 0. Using only the combinational part shown in Figure 8.26(b), derive a
test vector (CLR, A, PS) to detect the A s-a-0 fault at the output Z. Find
a justification sequence, assuming the combinational logic to be fault-free in
previous time-frames. Verify whether this test sequence will work when the
fault is present in all time-frames. If the test does not work, then derive an
alternative test assuming the fault to be present in all time-frames.

CLR CLR DC
Z

s-a-0 — z
A
PS NS A _"‘[>°_
PS NS
=
flop
(a) Sequential circuit. (a) Combinational logic.

Figure 8.26: Circuit for Problem 8.9.

Problems 251

8.10

8.11

8.12

8.13

8.14

8.15

8.16

8.17

Prove that a fault that is untestable in the stand-alone combinational logic is
also untestable in the sequential circuit.

Prove that a fault in the combinational logic of a synchronous sequential circuit
is untestable if no combinational test vector can be justified using fault-free
time-frames. Hint: See the paper by Agrawal and Chakradhar [30].

Pseudo-combinational circuit. Derive a combinational circuit by replacing all
flip-flops by shorting wires in the circuit of Figure 8.9. This is known as
the pseudo-combinational transformation, which can be applied to any cycle-
free clocked sequential circuit [463]. Derive a test for the fault D s-a-0 in
the pseudo-combinational circuit. Verify that the vector sequence obtained
by repeatedly applying this vector four times will detect the D s-a-0 fault
in the original sequential circuit. Note that the number of repetitions equals
sequential depth + 1.

Prove that if a combinational test vector can be obtained for a fault in the
pseudo-combinational circuit, then that vector repeated as many times as
sequential depth + 1 will always detect the corresponding fault in the se-
quential circuit. Hint: See the paper by Min and Rogers [468§]

Prove that a synchronous sequential circuit that is not initializable, must be
cyclic.

Cyclic circuits. Redefine the s-graph by including Pls and POs as additional
vertices. Levelize the graph starting from PI vertices using the minimum dis-
tance rule. Draw the new types of levelized s-graphs for circuits of Figures 8.9
and 8.13. What do the depths of these graphs represent in terms of the length
of test sequences?

Race fault in asynchronous circuit. Derive a test for the s-a-1 fault at the
output of the NOT gate in the circuit of Figure 8.27. Is this a race fault?

A

Q (primary output)

s-a-1

Figure 8.27: Circuit for Problem 8.16.

Oscillation fault. The asynchronous circuit of Figure 8.28 is designed to have
no memory state. Derive a test for the s-a-1 fault on the C input of the NAND
gate and show that it is an oscillation fault. Redesign the fault-free function
as a combinational circuit.

