5.5 Algorithms for Fault Simulation 115

was applied. Thus, there are no changing signals (events) shown. To each good-
gate, a number of bad-gates are attached in a linked-list structure (shown as tiny
wiggly arrows.) Attached to the good AND gate are four bad-gates, ag, by, co, and
eo. Notice that at least one value around a bad-gate differs from the good-gate and
the difference is caused by the corresponding fault. Fault lists for the other two gates
are also shown in the figure. At the primary output g, any bad-gate whose output
differs from that of the good-gate indicates fault detection. Thus, faults aqg, cg, €,
and go are detected. With fault-dropping, we would have removed these faults from
further consideration. In this exercise, however, we will not drop faults.

Notice that our fault detection result agrees with that obtained by deductive fault
simulation in Figure 5.18. But the fault lists there were shorter. In the deductive
stmulator the fault-list is for a signal and contains only the faults that affect (or are
detected at) that signal. In the concurrent simulator the fault-list is for a gate and
even faults that affect the inputs of that gate are included in the list. Fault-lists in
a concurrent simulator are, therefore, comparatively longer. The advantage, though
not as clear in logic simulation, is significant when more complex functional modules
(memories and RTL or behavioral models) are simulated.

In Figure 5.20, we simulate a 1 to 0 (1 — 0) good-event at a. FExamine the
changes shown in the AND good-gate and its fault-list (associated bad-gates.) The
top input of all except the ag bad-gate change. Only the good-gate output changes,
producing a 1 — 0 event on signal e. After these evaluations, bad-gates ag and
eo have identical signal values as the good-gate and hence they converge. They
are removed from the fault-list. At this point, one good-event 1 — 0 on e and no
bad-events have been generated. The OR gate is evaluated and produces a 1 — 0
good-event on ¢. Bad-gates are also evaluated but none generates any bad-event.
After evaluation, bad-gates ag, co, €9 and gg converge to the good OR gate. These
are removed from the fault-list. However, the processing of the (1 — 0) good-event
at a is not complete.

As Figure 5.21 shows, changing of signal a activates fault ay. Thus, a diverging
bad-gate labeled ay is inserted in the fault-list of the AND gate. Newly diverging gates
are shown with lighter grey shading in Figure 5.21. Similarly, another bad-gate e,
s also added. These two generate bad-events, which when processed at the OR gate
produce further divergence of bad-gates aq and ey there. The change caused by the
good-event at the OR gate, discussed above, results in the divergence of another
bad-gate g1. This completes the simulation.

All bad-gates at the output g have a different output value than that of the good-
gate. Therefore, detected faults are by, do, fi, a1, €1, and g1.

Our example illustrates only some features of the concurrent fault simulation
algorithm. Useful techniques such as multi-list traversal (MLT) allow simulation
of multiple output functions that may also have internal states. An interested
reader should study the book by Ulrich et al. [684] to learn about the complete
capabilities of this algorithm. Its significant advantages are efficiency (elimination
of redundant computation) and modeling flexibility (fault simulation for anything
that can be simulated.) Some notable concurrent fault simulators are the MARS



