TABLE OF CONTENTS

	10.9	Summary	382
11	-	DEL-BASED ANALOG AND MIXED-SIGNAL TEST	385
		Analog Testing Difficulties	
		Analog Fault Models	
		Levels of Abstraction	
		Types of Analog Testing	
	11.5	Analog Fault Simulation	
		11.5.1 Motivation	
		11.5.2 DC Fault Simulation of Nonlinear Circuits	
		11.5.3 Linear Analog Circuit AC Fault Simulation	
		11.5.4 Monte-Carlo Simulation	
	11.6	Analog Automatic Test-Pattern Generation	
		11.6.1 ATPG Using Sensitivities	
		11.6.2 ATPG Using Signal Flow Graphs	
		11.6.3 Additional Methods	
	11.7	Summary	413
12	DEL	AY TEST	417
	12.1	Delay Test Problem	417
	12.2	Path-Delay Test	420
		12.2.1 Test Generation for Combinational Circuits	424
		12.2.2 Number of Paths in a Circuit	
		Transition Faults	
	12.4	Delay Test Methodologies	
		12.4.1 Slow-Clock Combinational Test	
		12.4.2 Enhanced-Scan Test	
		12.4.3 Normal-Scan Sequential Test	
		12.4.4 Variable-Clock Non-Scan Sequential Test	
		12.4.5 Rated-Clock Non-Scan Sequential Test	
	12.5	Practical Considerations in Delay Testing	
		12.5.1 At-Speed Testing	
	12.6	Summary	436
13	IDDO	Q TEST	439
	13.1	Motivation	439
	13.2	Faults Detected by I_{DDQ} Tests	441
		I_{DDQ} Testing Methods	446
		13.3.1 I_{DDQ} Fault Coverage Metrics	446
		13.3.2 I_{DDQ} Test Vector Selection from Stuck-Fault Vector Sets	448
		13.3.3 Instrumentation Problems	451
		13.3.4 Current Limit Setting	452
	13.4	Surveys of I_{DDQ} Testing Effectiveness	
		Limitations of I_{DDQ} Testing	
		Delta I_{DDQ} Testing	

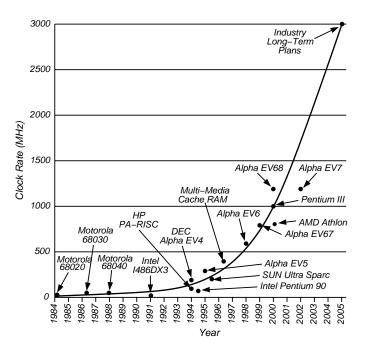


Figure 1.4: Microprocessor clock rates.

We compute the yearly running cost of the ATE by assuming a linear depreciation over five years, and an annual maintenance cost of 2% of the purchase price. The operating cost of the building, facilities, auxiliary equipment (wafer and chip handlers, fixtures, etc.), and personnel is estimated to be 0.5M. Thus:

$$\begin{aligned} Running \ cost &= Depreciation + Maintenance + Operating \ cost \\ &= \$0.854M + \$0.085M + \$0.5M = \$1.439M/year \end{aligned}$$

The tester is used in three eight-hour shifts per day and on all days of the year. Therefore:

Testing
$$cost = \frac{\$1.439M}{365 \times 24 \times 3,600} = 4.56 \ cents/second$$

The test time for a digital ASIC (application specific integrated circuit) is 6 seconds. That gives the test cost as 27.36 cents. Since the bad chips are not sold, their test cost must be recovered from the sale of good chips. If the yield is 65%, then the test component in the sale price of a good chip is 27.36/0.65 \approx 42 cents.

The test time of a chip depends on the types of tests conducted. These may include parametric tests (leakage, contact, voltage levels, etc.) applied at a slow speed, and vector tests (also called "functional tests" in the ATE environment) applied at high speed. The time of parametric tests is proportional