© DIGITAL VISION

Visual Odometry

Part Il: Matching, Robustness, Optimization, and Applications

By Friedrich Fraundorfer and Davide Scaramuzza

isual odometry (VO) is the process of estimating
the egomotion of an agent (e.g., vehicle, human,
and robot) using the input of a single or multiple
cameras attached to it. Application domains include
robotics, wearable computing, augmented reality, and
automotive. The term VO was popularized in 2004 by
Nister in his landmark article [1], but already appeared
earlier, e.g., [88], [89]. The term was chosen for its similar-
ity to wheel odometry, which incrementally estimates the
motion of a vehicle by integrating the number of turns of
its wheels over time. Likewise, VO operates by incremen-
tally estimating the pose of the vehicle through examina-
tion of the changes that movement induces on the images
of its onboard cameras. For the VO to work effectively,
there should be sufficient illumination in the environment
and a static scene with sufficient texture to allow apparent
motion to be extracted. Furthermore, consecutive frames
should be captured by ensuring that they have sufficient
scene overlap.

Digital Object Identifier 10.1109/MRA.2012.2182810
Date of publication: 16 February 2012

78 * IEEEROBOTICS & AUTOMATION MAGAZINE © JUNE 2012

The advantage of VO with respect to wheel odometry is
that VO is not affected by wheel slip in uneven terrain or
other adverse conditions. It has been demonstrated that
compared to wheel odometry, VO provides more accurate
trajectory estimates, with the relative position error rang-
ing from 0.1 to 2%. This capability makes VO an interest-
ing supplement to wheel odometry and, additionally, other
navigation systems such as global positioning system
(GPS), inertial measurement units (IMUs), and laser
odometry (similar to VO, laser odometry estimates the
egomotion of a vehicle by scan matching of consecutive
laser scans). In GPS-denied environments, such as under-
water and aerial, VO has utmost importance.

This two-part tutorial and survey provides a broad
introduction to VO and the research that has been under-
taken from 1980 to 2011. Although the first two decades
witnessed many offline implementations, only during the
third decade did real-time working systems flourish, which
has led VO to be used on another planet by two Mars-
exploration rovers for the first time. Part I presented a
historical review of the first 30 years of research in this
field, a discussion on camera modeling and calibration,

1070-9932/12/$31.00©2012 |IEEE

and a description of the main motion-estimation pipelines
for both monocular and binocular schemes, outlining the
pros and cons of each implementation [87]. Part II (this
tutorial) deals with feature matching, robustness, and ap-
plications. It reviews the main point-feature detectors used
in VO and the different outlier-rejection schemes. Particu-
lar emphasis is given to the random sample consensus
(RANSAC) and the strategies devised to speed it up are
discussed. Other topics covered are error modeling, loop-
closure detection (or location recognition), and bundle
adjustment. Links to online, ready-to-use code are also
given. The mathematical notation and concepts used in
this article are defined in Part I of this tutorial and, there-
fore, are not repeated here.

There are two main approaches to find feature points and
their correspondences. The first one is to find features in
one image and track them in the following images using
local search techniques, such as correlation. The second
one is to independently detect features in all the images
and match them based on some similarity metric between
their descriptors. The former approach is more suitable
when the images are taken from nearby viewpoints,
whereas the latter is more suitable when a large motion or
viewpoint change is expected. Early research in VO is
opted for the former approach [2]—[5] while the works in
the last decade concentrated on the latter approach [1],
[6]—[9]. The reason is that early works were conceived for
small-scale environments, where images were taken from
nearby viewpoints, while in the last few decades, the focus
has shifted to large-scale environments, and so the images
are taken as far apart as possible from each to limit the
motion-drift-related issues.

Feature Detection
During the feature-detection step, the image is searched for
salient keypoints that are likely to match well in other
images. A local feature is an image pattern that differs from
its immediate neighborhood in terms of intensity, color, and
texture. For VO, point detectors,
such as corners or blobs, are impor-

next images), computational efficiency, robustness (to
noise, compression artifacts, blur), distinctiveness (so that
features can be accurately matched across different
images), and invariance {to both photometric (e.g., illumi-
nation) and geometric changes [rotation, scale (zoom),
perspective distortion]}.

The VO literature is characterized by many point-feature
detectors, such as corner detectors (e.g., Moravec [2], For-
stner [10], Harris [11], Shi-Tomasi [12], and FAST [13]) and
blob detectors (SIFT [14], SURF [15], and CENSURE [16]).
An overview of these detectors can be found in [17]. Each
detector has its own pros and cons. Corner detectors are fast
to compute but are less distinctive, whereas blob detectors are
more distinctive but slower to detect. Additionally, corners
are better localized in image position than blobs but are less
localized in scale. This means that corners cannot be rede-
tected as often as blobs after large changes in scale and view-
point. However, blobs are not always the right choice in some
environments—for instance, SIFT automatically neglects cor-
ners that urban environments are extremely rich of. For these
reasons, the choice of the appropriate feature detector should
be carefully considered, depending on the computational
constraints, real-time requirements, environment type, and
motion baseline (i.e., how nearby images are taken). An
approximate comparison of properties and performance of
different corner and blob detectors is given in Figure 1. Notice
that SIFT, SURF, and CENSURE are not true affine invariant
detectors but were empirically found to be invariant up to
certain changes of the viewpoint. A performance evaluation
of feature detectors and descriptors for indoor VO has been
given in [18] and for outdoor environments in [9] and [19].

Every feature detector consists of two stages. The first is
to apply a feature-response function on the entire image
[such as the corner response function in the Harris detector
or the difference-of-Gaussian (DoG) operator of the SIFT].
The second step is to apply nonmaxima suppression on the
output of the first step. The goal is to identify all local min-
ima (or maxima) of the feature-response function. The out-
put of the nonmaxima suppression represents detected
features. The trick to make a detector invariant to scale

tant because their position in the = c @
. = |6 @
image can be measured accurately. s 5| cx = = 8 |58 & 5
. B = = o w= == =
A corner is defined as a point at g B 5 |28 |08 |08 | § |EE| 2 ko)
he i . ¢ £E2 o2 | & S| sS|EC o S 3 o S
Q0 | 20] = (5] o =
the intersection of two or more S8 1281|2282 |%z2| & |5g]| & =
edges. A blob is an image pattern Hari A R "
. o . aris x X
that differs from its immediate
neighborhood in terms of intensity, | Shi-Tomasi X X el U ++
color, and texture. It is not an edge, [pagT N N N N A T
nor a corner. The appealing proper-
ties that a good feature detector | SIFT X X X I A I
should have are: localization accu- | SURF = X X x | =+ | =+ | +
racy (both in position and scale),
e CENSURE X X X X |+ |
repeatability (i.e., a large number of
features should be redetected in the Comparison of feature detectors: properties and performance.

JUNE2012 © IEEEROBOTICS & AUTOMATION MAGAZINE ¢ 79

changes consists in applying the detector at lower-scale and
upper-scale versions of the same image [Figure 2(a)]. Invari-
ance to perspective changes is instead attained by approxi-
mating the perspective distortion as an affine one.

SIFT is a feature devised for object and place recogni-
tion and found to give outstanding results for VO. The
SIFT detector starts by convolving the upper and lower
scales of the image with a DoG operator and then takes the
local minima or maxima of the output across scales and
space (Figure 2). The power of SIFT is in its robust descrip-
tor, which will be explained in the following section. The
SUREF detector builds upon the SIFT but uses box filters to
approximate the Gaussian, resulting in a faster computa-
tion compared to SIFT, which is achieved with integral
images [90].

Feature Descriptor

In the feature description step, the region around each
detected feature is converted into a compact descriptor that
can be matched against other descriptors. The simplest
descriptor of a feature is its appearance, that is, the intensity
of the pixels in a patch around the feature point. In this case,
error metrics such as the sum of squared differences (SSDs)
or the normalized cross correlation (NCC) can be used to
compare intensities [20]. Contrary to SSD, NCC compen-
sates well for slight brightness changes. An alternative and
more robust image similarity measure is the Census trans-
form [21], which converts each image patch into a binary
vector representing which neighbors have their intensity
above or below the intensity of the central pixel. The patch
similarity is then measured through Hamming distance.

(b)

Figure 2. The original image (a, left) is smoothed with four Gaussian filters with different sigmas, and this is repeated after
downsampling the image of a factor two. Finally, (b) DoG images are computed by taking the difference between successive
Gaussian-smoothed images. SIFT features are found as local minima or maxima of DoG images across scales and space.

80 * IEEEROBOTICS & AUTOMATION MAGAZINE * JUNE 2012

In many cases, the local appear-
ance of the feature is not a good
descriptor of the information carried
by the feature because its appearance
will change with orientation, scale,
and viewpoint changes. In fact, SSD
and NCC are not invariant to any of
these changes, and, therefore, their
use is limited to images taken at
nearby positions. One of the most
popular descriptors for point features
is the SIFT. The SIFT descriptor is
basically a histogram of local gradient
orientations. The patch around the
feature is decomposed into a 4 X 4
grid. For each quadrant, a histogram
of eight gradient orientations is built.
All these histograms are then con-
catenated together, forming a 128-
element descriptor vector. To reduce
the effect of illumination changes, the
descriptor is then normalized to unit length.

The SIFT descriptor proved to be stable against changes
in illumination, rotation, and scale, and even up to 60°
changes in viewpoint. Example of SIFT features are shown
in Figure 3. The orientation and scale of each feature is
shown. The SIFT descriptor can, in general, be computed
for corner or blob features; however, its performance will
decrease on corners because, by definition, corners occur
at the intersection of edges. Therefore, its descriptor won’t
be as distinctive as for blobs, which, conversely, lie in
highly textured regions of the image.

Between 2010 and 2011, three new descriptors have
been devised, which are much faster to compute than SIFT
and SURF. A simple binary descriptor named BRIEF [22]
became popular: it uses pairwise brightness comparisons
sampled from a patch around the keypoint. While
extremely fast to extract and compare, it still exhibits high
discriminative power in the absence of rotation and scale
change. Inspired by its success, ORB [23] was developed,
which tackles orientation invariance and an optimization
of the sampling scheme for the brightness value pairs.
Along the same lines, BRISK [24] provides a keypoint
detector based on FAST, which allows scale and rotation
invariance, and a binary descriptor that uses a configurable
sampling pattern.

Feature Matching

The feature-matching step searches for corresponding
features in other images. Figure 4 shows the SIFT fea-
tures matched across multiple frames overlaid on the
first image. The set of matches corresponding to the
same feature is called feature track. The simplest way for
matching features between two images is to compare all
feature descriptors in the first image to all other feature
descriptors in the second image. Descriptors are

Figure 3. SIFT features shown with
orientation and scale.

compared using a similarity measure.
If the descriptor is the local appearance
of the feature, then a good measure is
the SSD or NCC. For SIFT descriptors,
this is the Euclidean distance.

Mutual Consistency Check

After comparing all feature descrip-
tors between two images, the best
correspondence of a feature in the sec-
ond image is chosen as that with the
closest descriptor (in terms of distance
or similarity). However, this stage
may result with features in the second
image matching with more than one
feature in the first image. To decide
which match to accept, the mutual
consistency check can be used. This
consists in pairing every feature in the
second image with features in the first
image. Only pairs of corresponding
features that mutually have each other as a preferred match
are accepted as correct.

Constrained Matching

A disadvantage of this exhaustive matching is that it is
quadratic in the number of features, which can become
impractical when the number of features is large (e.g., several
thousands). A better approach is to use an indexing structure,
such as a multidimensional search tree or a hash table, to
rapidly search for features near a given feature. A faster fea-
ture matching is to search for potential correspondences in
regions of the second image where they are expected to be.
These regions can be predicted using a motion model and the
three-dimensional (3-D) feature position (if available). For
instance, this is the case in the 3-D-to-2-D-based motion esti-
mation described in Part I of this tutorial. The motion can be
given by an additional sensor like IMU, wheel odometry [25],
laser, and GPS, or can be inferred from the previous position
assuming a constant velocity model, as proposed in [26]. The

Figure 4. SIFT-feature tracks.

JUNE2012 * IEEEROBOTICS & AUTOMATION MAGAZINE © 81

predicted region is then calculated as an error ellipse from the
uncertainty of the motion and that of the 3-D point.

Alternatively, if only the motion model is known but
not the 3-D feature position, the corresponding match can
be searched along the epipolar line in the second image.
This process is called epipolar matching. As can be
observed in Figure 5, a single 2-D feature and the two
camera centers define a plane in the 3-D space that inter-
sect both images into two lines, called epipolar lines. An
epipolar line can be computed directly from a 2-D feature
and the relative motion of the camera, as explained in
Part I of this tutorial. Each feature in the first image has a
different epipolar line in the second image.

In stereovision, instead of computing the epipolar line
for each candidate feature, the images are usually rectified.
Image rectification is a remapping of an image pair into a
new image pair where epipolar lines of the left and right
images are horizontal and aligned to each other. This has
the advantage of facilitating image-correspondence search
since epipolar lines no longer have to be computed for each
feature: the correspondent of one feature in the left (right)
image can be searched across those features in the right
(left) image, which lie on the same row. Image rectification
can be executed efficiently on graphics processing units
(GPUgs). In stereovision, the relative position between the
two cameras is known precisely. However, if the motion is
affected by uncertainty, the epipolar search is usually
expanded to a rectangular area within a certain distance
from the epipolar line. In stereovision, SSD, NCC, and
Census transform are the widely used similarity metrics
for epipolar matching [91].

Feature Tracking
An alternative to independently finding features in all candi-
date images and then matching them is to detect features in
the first image and, then, search for their corresponding
matches in the following images. This detect-then-track
approach is suitable for VO applications where images are
taken at nearby locations, where the amount of motion and
appearance deformation between adjacent frames is small.
For this particular application, SSD and NCC can work well.
However, if features are tracked over long image
sequences, their appearance can undergo larger changes.

Epipolar Epipolar—
<" Line Line ™

Tk, k-1

lllustration of the epipolar constraint.

82 * IEEEROBOTICS & AUTOMATION MAGAZINE * JUNE 2012

In this case, a solution is to apply an affine-distortion
model to each feature. The resulting tracker is often called
KanadeLucasTomasi (KLT) tracker [12].

Discussion

SIFT Matching

For SIFT feature matching, a distance-ratio test was pro-
posed by the authors initially, for use in place and object
detection [14]. This distance-ratio test accepts the closest
match (the one with minimum Euclidean distance) only if
the ratio between the closest and the second closest match is
smaller than a user-specified threshold. The idea behind this
test is to remove matches that might be ambiguous, e.g., due
to repetitive structure. The threshold for the test can only be
set heuristically and an unlucky guess might remove correct
matches as well. Therefore, in many cases, it might be bene-
ficial to skip the ratio test and let RANSAC take care of the
outliers as explained in the “Outlier Removal” section.

Lines and Edgelets

An alternative to point features for VO is to use lines or
edgelets, as proposed in [27] and [28]. They can be used in
addition to points in structured environments and may
provide additional cues, such as direction (of the line or
edgelet), and planarity and orthogonality constraints. Con-
trary to points, lines are more difficult to match because
lines are more likely to be occluded than points. Further-
more, the origin and end of a line segment of edgelet may
not exist (e.g., occlusions and horizon line).

Number of Features and Distribution

The distribution of the features in the image has been found
to affect the VO results remarkably [1], [9], [29]. In particu-
lar, more features provide more stable motion-estimation
results than with fewer features, but at the same time, the
keypoints should cover the image as evenly as possible. To
do this, the image can be partitioned into a grid, and the fea-
ture detector is applied to each cell by tuning the detection
thresholds until a minimum number of features are found
in each subimage [1]. As a rule of the thumb, 1,000 features
is a good number for a 640 X 480-pixel image.

Dense and Correspondence-Free Methods

An alternative to sparse-feature extraction is to use dense
methods, such as optical flow [30], or feature-less methods
[31]. Optical flow aims at tracking, ideally, each individual
pixel or a subset of the whole image (e.g., all pixels on a
grid specified by the user). However, similar to feature
tracking, it assumes small motion between frames and,
therefore, is not suitable for VO applications since motion
error accumulates quickly. Another alternative is feature-
less motion-estimation methods, such as [31]: all the pixels
in the two images are used to compute the relative motion
using a harmonic Fourier transform. This method has the
advantage to work especially with low-texture images but

is computationally extremely expensive (can take up to
several minutes), and the recovered motion is less accurate
than with feature-based methods.

Matched points are usually contaminated by outliers, that is,
wrong data associations. Possible causes of outliers are
image noise, occlusions, blur, and changes in viewpoint and
illumination for which the mathematical model of the fea-
ture detector or descriptor does not account for. For
instance, most of the feature-matching techniques assume
linear illumination changes, pure camera rotation and scal-
ing (zoom), or affine distortion. However, these are just
mathematical models that approximate the more complex
reality (image saturation, perspective distortion, and motion
blur). For the camera motion to be estimated accurately, it is
important that outliers be removed. Outlier rejection is the
most delicate task in VO. An example VO result before and
after removing the outliers is shown in Figure 6.

RANSAC

The solution to outlier removal consists in taking advantage
of the geometric constraints introduced by the motion model.
Robust estimation methods, such as M-estimation [32], case
deletion, and explicitly fitting and removing outliers [33], can
be used but these often work only if there are relatively few
outliers. RANSAC [34] has been established as the standard
method for model estimation in the presence of outliers.

The idea behind RANSAC is to compute model
hypotheses from randomly sampled sets of data points and
then verify these hypotheses on the other data points. The
hypothesis that shows the highest consensus with the other
data is selected as a solution. For two-view motion estima-
tion as used in VO, the estimated model is the relative
motion (R, t) between the two camera positions, and the
data points are the candidate feature correspondences.

0
0 20 40 60 80 100 120 140
X (m)

== Before Removing the Outliers
= After Removing the Outliers

Comparison between VO trajectories estimated
before and after removing the outliers. (Photo courtesy of
Google Maps © 2007 Google, © 2007 Tele Atlas.)

Inlier points to a hypothesis are found by computing the
point-to-epipolar line distance [35]. The point-to-epipolar
line distance is usually computed as a first-order approxi-
mation—called Sampson distance—for efficiency reasons
[35]. An alternative to the point-to-epipolar line distance
is the directional error proposed by Oliensis [36]. The
directional error measures the angle between the ray of the
image feature and the epipolar plane. The authors claim
that the use of the directional error is advantageous for the
case of omnidirectional and wide-angle cameras but also
beneficial for the standard camera case.
The outline of RANSAC is given in Algorithm 1.

1) Initial: let A be a set of N feature correspondences2) Repeat
2.1) Randomly select a sample of s points from A

2.2) Fit a model to these points

2.3) Compute the distance of all other points to this model

2.4) Construct the inlier set (i.e. count the number of points
whose distance from the model < d)

2.5) Store these inliers
2.6) Until maximum number of iterations reached

3) The set with the maximum number of inliers is chosen as a
solution to the problem

4) Estimate the model using all the inliers.

The number of subsets (iterations) N that is necessary
to guarantee that a correct solution is found can be com-
puted by

N__ logl—p) - W
log(1 — (1 —¢))

where s is the number of data points from which the model
can be instantiated, € is the percentage of outliers in the
data points, and P is the requested probability of success
[34]. For the sake of robustness, in many practical imple-
mentations, N is usually multiplied by a factor of ten. More
advanced implementations of RANSAC estimate the frac-
tion of inliers adaptively, iteration after iteration.

As observed, RANSAC is a probabilistic method and is
nondeterministic in that it exhibits a different solution on
different runs; however, the solution tends to be stable
when the number of iterations grows.

Minimal Model Parameterizations

As can be observed in Figure 7, N is exponential in the
number of data point s necessary to estimate the model.
Therefore, there is a high interest in using a minimal
parameterization of the model. In Part I of this tutorial, an
eight-point minimal solver for uncalibrated cameras was
described. Although it works also for calibrated cameras,
the eight-point algorithm fails when the scene points are

JUNE2012 * IEEEROBOTICS & AUTOMATION MACAZINE * 83

coplanar. However, when the camera is calibrated, its six
degrees of freedom (DoF) motion can be inferred from a
minimum of five-point correspondences, and the first
solution to this problem was given in 1913 by Kruppa [37].
Several five-point minimal solvers were proposed later in
[38]—[40], but an efficient implementation, based on [39],
was found only in 2003 by Nister [41] and later revised in
[42]. Before that, the six- [43], seven- [44], or eight- solvers
were commonly used. However, the five-point solver has
the advantage that it works also for planar scenes. (Observe
that eight- and seven-point solvers work for uncalibrated,
perspective cameras. To use them also with omnidirec-
tional cameras, the camera needs to be calibrated. Alterna-
tively, n -point solvers for uncalibrated omnidirectional
cameras have also been proposed [45]-[47], where n
depends on the type of mirror or fish eye used. Lim et al.
[48] showed that, for calibrated omnidirectional cameras,
6 DoF motion can be recovered using only two pairs of
antipodal image points. Antipodal image points are points
whose rays are aligned but which correspond to opposite
viewing directions. They also showed that antipodal points
allow us to independently estimate translation and
rotation.)

Despite the five-point algorithm represents the minimal
solver for 6 DoF motion of calibrated cameras, in the last
few decades, there have been several attempts to exploit
different cues to reduce the number of motion parameters.
In [49], Fraundorfer et al. proposed a three-point minimal
solver for the case of two known camera-orientation

Number of RANSAC lterations

1,000
—>— Histogram Voting
800 || —°— One-Point
—=— Two-Point
@ —— Five-Point
_5 600
©
2 400¢
©
S 200¢
0.
0O 10 20 30 40 50 60 70 80 90
Fraction of Outliers
(No. of Outliers)/(No. of Points) (%)
Number of RANSAC iterations versus fraction of
outliers.
Number of points (s): 8 7 6 5 4

Number of iterations (V): 1,177 587 292

84 ¢ |EEEROBOTICS & AUTOMATION MAGAZINE * JUNE 2012

145 71

angles. For instance, this can be used when the camera is
rigidly attached to a gravity sensor (in fact, the gravity vec-
tor fixes two camera-orientation angles). Later, Naroditsky
et al. [50] improved on that work by showing that the
three-point minimal solver can be used in a four-point
(three-plus-one) RANSAC scheme. The three-plus-one
stands for the fact that an additional far scene point
(ideally, a point at infinity) is used to fix the two orienta-
tion angles. Using their four-point RANSAC, they also
show a successful 6 DoF VO. A two-point minimal solver
for 6-DoF VO was proposed by Kneip et al. [51], which
uses the full rotation matrix from an IMU rigidly attached
to the camera.

In the case of planar motion, the motion model com-
plexity is reduced to 3 DoF and can be parameterized with
two points as described in [52]. For wheeled vehicles, Scar-
amuzza et al. [9], [53] showed that the motion can be
locally described as planar and circular, and, therefore, the
motion model complexity is reduced to 2 DoF, leading to a
one-point minimal solver. Using a single point for motion
estimation is the lowest motion parameterization possible
and results in the most efficient RANSAC algorithm. Addi-
tionally, they show that, by using histogram, voting outliers
can be found in a small, single iteration. A performance
evaluation of five-, two-, and one-point RANSAC algo-
rithms for VO was finally presented in [54].

To recap, the reader should remember that, if the
camera motion is unconstrained, the minimum number of
points to estimate the motion is five, and, therefore, the
five-point RANSAC (or the six-, seven-, or eight-point
one) should be used. Of course, using the five-point RAN-
SAC will require less iterations (and thus less time) than
the six-, seven-, or eight-point RANSAC. A summary of
the number of minimum RANSAC iterations as a function
of the number of model parameters s is shown in Table 1
for the eight-, seven-, five-, four-, two-, one-point minimal
solvers. These values were obtained from (1), assuming a
probability of success P = 99% and a percentage of out-
liers € = 50%.

Reducing the Iterations of RANSAC

As can be observed in Table 1, with P =99% and
€ = 50%, the five-point RANSAC requires a minimum of
145 iterations. However, in reality, the things are not
always so straightforward. Sometimes, the number of out-
liers is underestimated and using more iterations increases
the chances to find more inliers. In some cases, it can even
be necessary to allow for thousands of iterations. Because
of this, several works have been produced in the endeavor
of increasing the speed of RANSAC.
The maximum likelihood estima-
tion sample consensus [55] makes
the measurement of correspond-
ences more reliable and improves
the estimate of the hypotheses. The
progressive sample consensus [56]

ranks the correspondences based on their similarity and
generates motion hypotheses starting from points with
higher rank. Preemptive RANSAC [57] uses preemptive
scoring of the motion hypotheses and a fixed number of
iterations. Uncertainty RANSAC [58] incorporates feature
uncertainty and shows that this determines a decrease in
the number of potential outliers, thus enforcing a reduc-
tion in the number of iterations. In [59], a deterministic
RANSAC approach is proposed, which also estimates the
probability that a match is correct.

What all the mentioned algorithms have in common is
that the motion hypotheses are directly generated from the
points. Conversely, other algorithms operate by sampling
the hypotheses from a proposal distribution of the vehicle
motion model [60], [61].

Among all these algorithms, preemptive RANSAC has
been the most popular one because the number of itera-
tions can be fixed a priori, which has several advantages
when real-time operation is necessary.

Is It Really Better to Use a Minimal

Set in RANSAC?

If one is concerned with certain speed requirements, using a
minimal point set is definitely better than using a nonmini-
mal set. However, even the five-point RANSAC might not
be the best idea if the image correspondences are very noisy.
In this case, using more points than a minimal set is proved
to give better performance (in terms of accuracy and num-
ber of inliers) [62], [63]. To understand it, consider a single
iteration of the five-point RANSAC: at first, five random
points are selected and used to estimate the motion model;
second, this motion hypothesis is tested on all other points.
If the selected five points are inliers with large image noise,
the motion estimated from them will be inaccurate and will
exhibit fewer inliers when tested on all the other points.
Conversely, if the motion is estimated from more than five
points using the five-point solver, the effects of noise are
averaged and the estimated model will be more accurate,
with the effect that more inliers will be identified. Therefore,
when the computational time is not a real concern and one
deals with noisy features, using a nonminimal set may be
better than using a minimal set [62].

In VO, individual transformations Ty _; are concatenated
to form the current pose of the robot Cy (see Part I of this
tutorial). Each of these transformations Ty ; has an
uncertainty, and the uncertainty of the camera pose Cj
depends on the uncertainty of past transformations. This
is illustrated in Figure 8. The uncertainty of the transfor-
mation Ty x computed by VO depends on camera geom-
etry and the image features. A derivation for the stereo
case can be found in [3].

In the following, the uncertainty propagation is dis-
cussed. Each camera pose Cj and each transformation
Ty k-1 can be represented by a six-element vector containing

the position (x,y,z) and orientation (in Euler angles
¢,0,). These six-element vectors are denoted by Cr
and Ty s, respectively, e.g, Cx = (x, 9,2, ¢,0,%)". Bach
transformation Tk,k—l is represented by its mean
and covariance Xy ;1. The covariance matrix Xy x_; is a
6 X 6 matrix. The camera pose ék is written as ék =
f (ék,l, Tk, k—1), that is a function of the previous pose ék,l

and the transformation Tk)k,l with their covariances Xj_;
and X x_1, respectively. The combined covariance matrix
Cy is a 12 X 12 matrix and a compound of the covariance
matrices Xy 1 and Zg_;. Cy can be computed by using
the error propagation law [64], which uses a first-order
Taylor approximation; therefore,

| Zker 0 T
Xp =]{ 0 Teis]] (2)
=]akflqu]@fﬁ +]Tkykilzk,kfllj*k’kilT> (3)

where Iz, .]Tk,k—l are the Jacobians of f with respect to
Cr_; and Tk, k—1, respectively. As can be observed from this
equation, the camera-pose uncertainty is always increasing
when concatenating transformations. Thus, it is important
to keep the uncertainties of the individual transformations
small to reduce the drift.

VO computes the camera poses by concatenating the
transformations, in most cases from two subsequent views
at times k and k — 1 (see Part I of this tutorial). However, it
might also be possible to compute transformations
between the current time k and the » last time steps
Tk k—25 -+ Tk,k—n> OF even for any time step T;;. If these
transformations are known, they can be used to improve
the camera poses by using them as additional constraints
in a pose-graph optimization.

The uncertainty of the camera pose at C is a
combination of the uncertainty at C,_; (black solid ellipse) and
the uncertainty of the transformation T ,_; (gray dashed ellipse).

JUNE2012 * IEEEROBOTICS & AUTOMATION MACAZINE * 85

86 °

Pose-Graph Optimization

The camera poses computed from VO can be represented
as a pose graph, which is a graph where the camera poses
are the nodes and the rigid-body transformations between
the camera poses are the edges between nodes [65]. Each
additional transformation that is known can be added as
an edge into the pose graph. The edge constraints e;; define
the following cost function:

26 - Tq

¢

2
>

(4)

where T, is the transformation between the poses i and j.
Pose graph optimization seeks the camera pose parameters
that minimize this cost function. The rotation part of the
transformation makes the cost function nonlinear, and a
nonlinear optimization algorithm (e.g., Levenberg-Mar-
quardt) has to be used.

Loop Constraints for Pose-Graph Optimization

Loop constraints are valuable constraints for pose graph
optimization. These constraints form graph edges
between nodes that are usually far apart and between
which large drift might have been accumulated. Com-
monly, events like reobserving a landmark after not see-
ing it for a long time or coming back to a previously
mapped area are called loop detections [66]. Loop con-
straints can be found by evaluating visual similarity
between the current camera images and past camera
images. Visual similarity can be computed using global
image descriptors (e.g., [67] and [68]) or local image
descriptors (e.g., [69]). Recently, loop detection by visual
similarity using local image descriptors got a lot of atten-
tion and one of the most successful methods are based on
the so-called visual words [70]—[73]. In these approaches,
an image is represented by a bag of visual words. The
visual similarity between two images is then computed as
the distance of the visual word histograms of the two
images. The visual word-based approach is extremely
efficient to compute visual similarities between large sets
of image data, a property important for loop detection. A
visual word represents a high-dimensional feature
descriptor (e.g., SIFT or SURF) with a single integer num-
ber. For this quantization, the original high-dimensional
descriptor space is divided into nonoverlapping cells by
k-means clustering [74], which is called the visual vocabu-
lary. All feature descriptors that fall within the same cell
will get the cell number assigned, which represents the
visual word. Visual-word-based similarity computation is
often accelerated by organizing the visual-word database
as an inverted-file data structure [75] that makes use of
the finite range of visual vocabulary. Visual similarity
computation is the first step of loop detection. After find-
ing the top-# similar images, usually a geometric verifica-
tion using the epipolar constraint is performed and, for
confirmed matches, a rigid-body transformation is com-
puted using wide-baseline feature matches between the

|IEEE ROBOTICS & AUTOMATION MAGAZINE ® JUNE 2012

two images. This rigid-body transformation is added to
the pose graph as an additional loop constraint.

Windowed (or Local) Bundle Adjustment
Windowed bundle adjustment [76] is similar to pose-
graph optimization as it tries to optimize the camera
parameters but, in addition, it also optimizes the 3-D-
landmark parameters at the same time. It is applicable to
the cases where image features are tracked over more
than two frames. Windowed bundle adjustment consid-
ers a so-called window of n image frames and then per-
forms a parameter optimization of camera poses and 3-D
landmarks for this set of image frames. In bundle adjust-
ment, the error function to minimize is the image repro-
jection error:

2

, (5)

w508, 0)

where pi is the ith image point of the 3-D landmark X'
measured in the kth image and g(X’, Cy) is its image repro-
jection according to the current camera pose Cy.

The reprojection error is a nonlinear function, and the
optimization is usually carried out using Levenberg-Mar-
quardt. This requires an initialization that is close to the
minimum. Usually, a standard two-view VO solution
serves as initialization. The Jacobian for this optimization
problem has a specific structure that can be exploited for
efficient computation [76].

Windowed bundle adjustment reduces the drift com-
pared to two-view VO because it uses feature measure-
ments over more than two image frames. The current
camera pose is linked via the 3-D landmark, and the image
feature tracks not only the previous camera pose but also
the camera poses further back. The current and n — 1
previous camera poses need to be consistent with the
measurements over #n image frames. The choice of the
window size # is mostly governed by computational rea-
sons. The computational complexity of bundle adjustment
in general is O((gM + IN)’) with M and N being the num-
ber of points and cameras poses and g and / the number of
parameters for points and camera poses. A small window
size limits the number of parameters for the optimization
and thus makes real-time bundle adjustment possible. It is
possible to reduce the computational complexity by just
optimizing over the camera parameters and keeping the
3-D landmarks fixed, e.g., if the 3-D landmarks are accu-
rately triangulated from a stereo setup.

VO has been successfully applied within various fields. It is
used for egomotion estimation for space exploration (e.g.,
computing the egomotion of Mars Rovers [25] and that of
a planetary lander in the decent phase [77]) and can also
be found in consumer hardware, e.g., the Dacuda scanner
mouse [78].

Author

Description

Link

Willow Garage

Willow Garage

Willow Garage

Henrik Stewenius
etal.

Changchang Wu
etal.

Nico Cornelis et al.

Christopfer Zach
Edward Rosten

Michael Calonder
Leutenegger et al.

Jean-Yves
Bouguet

Davide
Scaramuzza

Christopher Mei
Mark Cummins

Friedrich
Fraundorfer

Manolis Lourakis
Christopher Zach

Rainer Kuem-
merle et al.

RAWSEEDS EU
Project

SFLY EU Project

Davide
Scaramuzza

OpenCV: A computer vision library maintained by Willow
Garage. The library includes many of the feature detectors
mentioned in this tutorial (e.g., Harris, KLT, SIFT, SURF, FAST,
BRIEF, ORB). In addition, the library contains the basic motion-
estimation algorithms as well as stereo-matching algorithms.

Robot operating system (ROS): A huge library and middleware
maintained by Willow Garage for developing robot applica-
tions. Contains a VO package and many other computer-
vision-related packages.

Point cloud library (PCL): A 3-D-data-processing library main-
tained from Willow Garage, which includes useful algorithms
to compute transformations between 3-D-point clouds.

Five-point algorithm: An implementation of the five-point algo-
rithm for computing the essential matrix.

SiftGPU: Real-time implementation of SIFT.

GPUSurf: Real-time implementation of SURF.
GPU-KLT: Real-time implementation of the KLT tracker.
Original implementation of the FAST detector.

Original implementation of the BRIEF descriptor.
BRISK feature detector.

Camera Calibration Toolbox for MATLAB.

OCamCalib: Omnidirectional Camera Calibration Toolbox for
MATLAB.

Omnidirectional camera calibration toolbox for MATLAB

Fast appearance-based mapping: Visual-word-based loop
detection.

Vocsearch: Visual-word-based place recognition and image
search.

Sparse bundle adjustment (SBA)

Simple sparse bundle adjustment (SSBA)

G20: Library for graph-based nonlinear function optimization.
Contains several variants of SLAM and bundle adjustment.

RAWSEEDS: Collection of data sets with different sensors (lidars,
cameras, and IMUs) with ground truth.

SFLY-MAV data set: Camera-IMU data set captured from an aerial
vehicle with Vicon data for ground truth.

ETH OMNI-VO: An omnidirectional-image data set captured
from the roof of a car for several kilometers in a urban environ-
ment. MATLAB code for VO is provided.

http://opencv.willowgarage.com

http://www.ros.org

http://pointclouds.org

http://www.vis.uky.edu/ ~stewe/
FIVEPOINT/

http://cs.unc.edu/ ~ccwu/siftgpu

http://homes.esat.kuleuven.be/
~ncorneli/gpusurf

http://www.inf.ethz.ch/personal/chzach/
opensource.html

http://www.edwardrosten.com/work/
fast.html

http://cvlab.epfl.ch/software/brief/

http://www.asl.ethz.ch/people/lestefan/
personal/BRISK

http://www.vision.caltech.edu/bouguetj/
calib_doc

https://sites.google.com/site/scarabotix/
ocamcalib-toolbox

http://homepages.laas.fr/~cmei/
index.php/Toolbox

http://www.robots.ox.ac.uk/~mijc/
Software.htm

http://www.inf.ethz.ch/personal/
fraundof/page2.html

http://www.ics.forth.gr/ ~lourakis/sba
http://www.inf.ethz.ch/personal/chzach/

opensource.html
http://openslam.org/g20
http://www.rawseeds.org

http://www.sfly.org

http://sites.google.com/site/scarabotix

VO is applied in all kinds of mobile-robotics systems,
such as space robots, ground robots, aerial robots, and
underwater robots. But probably, the most popular appli-
cation of VO has been on NASA Mars exploration rovers
[25], [79]. NASA’s VO has been used since January 2004
to track the motion of the two NASA rovers Spirit and

Opportunity as a supplement to dead reckoning. Their
stereo VO system was implemented on a 20-MHz central
processing unit and took up to three minutes for a two-
view structure-from-motion step. VO was mainly used to
approach targets efficiently as well as to maintain vehicle
safety while driving near obstacles on slopes, achieving

JUNE2012 © IEEEROBOTICS & AUTOMATION MACAZINE * 87

difficult drive approaches, performing slip checks to
ensure that the vehicle is still making progress.

VO is also applied onboard of unmanned aerial vehicles
of all kinds of sizes, e.g., within the Autonomous Vehicle
Aerial Tracking and Reconnaissance [80] and Swarm of
Micro Flying Robots (SFLY) [81] projects. Within the
SFLY project, VO was used to perform autonomous take-
off, point-to-point navigation, and landing of small-scale
quadrocopters.

Autonomous underwater vehicle is also a domain
where VO plays a big role. Underwater vehicles cannot rely
on GPS for position estimation; thus, onboard sensors
need to be used. Cameras provide a cost-effective solution;
in addition, the ocean floor often provides a texture-rich
environment [82], which is ideal for computer vision
methods. Applications range from coral-reef inspection
(e.g., the Starbug system [82] to archaeological surveys [83].

VO also plays a big role in the automotive industry.
Driver assistance systems (e.g., assisted braking) already
rely on computer vision and digital cameras. VO for auto-
motive market is in development, and its first demonstra-
tions have been successfully shown, e.g., within the
Daimler 6-D-Vision system [84] or as part of the VisLab
autonomous vehicle [85]. Driving the development of this
technology is the low cost of vision sensors as compared
to Lidar sensors, which is an important factor for the
automotive industry.

Some algorithms that can be used to build a VO system are
made publicly available by their authors. Table 2 points the
reader to a selection of these resources.

Part IT of the tutorial has summarized the remaining build-
ing blocks of the VO pipeline: specifically, how to detect
and match salient and repeatable features across frames
and robust estimation in the presence of outliers and bun-
dle adjustment. In addition, error propagation, applica-
tions, and links to publicly available code are included. VO
is a well understood and established part of robotics.

VO has reached a maturity that has allowed us to suc-
cessfully use it for certain classes of applications: space,
ground, aerial, and underwater. In the presence of loop clo-
sures, VO can be used as a building block for a complete
SLAM algorithm to reduce motion drift. Challenges that still
remain are to develop and demonstrate large-scale and
long-term implementations, such as driving autonomous
cars for hundreds of miles. Such systems have recently been
demonstrated using Lidar and Radar sensors [86]. However,
for VO to be used in such systems, technical issues regard-
ing robustness and, especially, long-term stability have to be
resolved. Eventually, VO has the potential to replace Lidar-
based systems for egomotion estimation, which are cur-
rently leading the state of the art in accuracy, robustness,
and reliability. VO offers a cheaper and mechanically easier-

88 * IEEEROBOTICS & AUTOMATION MAGAZINE * JUNE 2012

to-manufacture solution for egomotion estimation, while,
additionally, being fully passive. Furthermore, the ongoing
miniaturization of digital cameras offers the possibility to
develop smaller and smaller robotic systems capable of ego-
motion estimation.

The authors thank Konstantinos Derpanis for his fruitful
comments and suggestions.

[1] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry,” in Proc.
Int. Conf. Computer Vision and Pattern Recognition, 2004, pp. 652—659.
[2] H. Moravec, “Obstacle avoidance and navigation in the real world by
a seeing robot rover,” Ph.D. dissertation, Stanford University, Stanford,
CA, 1980.

[3] L. Matthies and S. Shafer, “Error modeling in stereo navigation,” IEEE
J. Robot. Automat., vol. 3, no. 3, pp. 239-248, 1987.

[4] S. Lacroix, A. Mallet, R. Chatila, and L. Gallo, “Rover self localization
in planetary-like environments,” in Proc. Int. Symp. Artificial Intelligence,
Robotics, and Automation for Space (i-SAIRAS), 1999, pp. 433—440.

[5] C. Olson, L. Matthies, M. Schoppers, and M. W. Maimone, “Robust
stereo ego-motion for long distance navigation,” in Proc. IEEE Conf.
Computer Vision and Pattern Recognition, 2000, pp. 453—458.

[6] M. Lhuillier, “Automatic structure and motion using a catadioptric
camera,” in Proc. IEEE Workshop Omnidirectional Vision, 2005, pp. 1-8.
[7] E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd,
“Real time localization and 3d reconstruction,” in Proc. Int. Conf.
Computer Vision and Pattern Recognition, 2006, pp. 363—370.

[8] J. Tardif, Y. Pavlidis, and K. Daniilidis, “Monocular visual odometry
in urban environments using an omnidirectional camera,” in Proc. IEEE/
RSJ Int. Conf. Intelligent Robots and Systems, 2008, pp. 2531-2538.

[9] D. Scaramuzza, F. Fraundorfer, and R. Siegwart, “Real-time monocu-
lar visual odometry for on-road vehicles with 1-point RANSAC,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA), 2009, pp. 4293—4299.
[10] W. Forstner, “A feature based correspondence algorithm for image
matching,” Int. Archiv. Photogram., vol. 26, no. 3, pp. 150-166, 1986.

[11] C. Harris and J. Pike, “3d positional integration from image
sequences,” in Proc. Alvey Vision Conf., 1987, pp. 233-236.

[12] C. Tomasi and J. Shi, “Good features to track,” in Proc. CVPR, 1994,
Pp. 593-600.

[13] E. Rosten and T. Drummond, “Machine learning for high-speed cor-
ner detection,” in Proc. European Conf. Computer Vision, 2006, vol. 1,
pp. 430-443.

[14] D. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol. 20, no. 2, pp. 91-110, 2003.

[15] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” in Proc. ECCV, 2006, pp. 404—417.

[16] M. Agrawal, K. Konolige, and M. Blas, “Censure: Center surround
extremas for realtime feature detection and matching,” in Proc. European
Conf. Computer Vision, 2008, pp. 102—115.

[17] R. Siegwart, I. Nourbakhsh, and D. Scaramuzza, Introduction to
Autonomous Mobile Robots, 2nd ed. Cambridge, MA, MIT Press, 2011.
[18] A. Schmidt, M. Kraft, and A. Kasinski, “An evaluation of image fea-
ture detectors and descriptors for robot navigation,” in Proc. Int. Conf.
Computer Vision and Graphics, 2010, pp. 251-259.

[19] N. Govender, “Evaluation of feature detection algorithms for struc-
ture from motion,” Council for Scientific and Industrial Research, Preto-
ria, Technical Report, 2009.

[20] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd ed.
Englewood Cliffs, NJ, Prentice Hall, 2007.

[21] R. Zabih and J. Woodfill, “Non-parametric local transforms for com-
puting visual correspondence,” in Proc. European Conf. Computer Vision,
1994, pp. 151-158.

[22] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary
robust independent elementary features,” in Proc. European Conf.
Computer Vision, 2010, pp. 778-792.

[23] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An effi-
cient alternative to sift or surf (pdf),” in Proc. IEEE Int. Conf. Computer
Vision (ICCV), Barcelona, Nov. 2011, pp. 2564-2571.

[24] S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invar-
iant scalable keypoints,” in Proc. Int. Conf. Computer Vision, 2011,
Pp. 2548-2555.

[25] M. Maimone, Y. Cheng, and L. Matthies, “Two years of visual odom-
etry on the mars exploration rovers: Field reports,” J. Field Robot., vol. 24,
no. 3, pp. 169-186, 2007.

[26] A. Davison, “Real-time simultaneous localisation and mapping
with a single camera,” in Proc. Int. Conf. Computer Vision, 2003,
pp. 1403-1410.

[27] T. Lemaire and S. Lacroix, “Vision-based SLAM: Stereo and monoc-
ular approaches,” Int. J. Comput. Vis., vol. 74, no. 3, pp. 343-364, 2006.
[28] G. Klein and D. Murray, “Improving the agility of keyframe-based
SLAM,” in Proc. European Conf. Computer Vision, 2008, pp. 802-815.
[29] H. Strasdat,]J. Montiel, and A. Davison, “Real time monocular
SLAM: Why filter?” in Proc. IEEE Int. Conf. Robotics and Automation,
2010, pp. 26572664

[30] B. Horn and B. Schunck, “Determining optical flow,” Artif. Intell.,
vol. 17, no. 1-3, pp- 185-203, 1981.

[31] A. Makadia, C. Geyer, and K. Daniilidis, “Correspondence-free
structure from motion,” Int. J. Comput. Vis., vol. 75, no. 3, pp. 311-
327,2007.

[32] P. Torr and D. Murray, “The development and comparison of robust
methods for estimating the fundamental matrix,” Int. . Comput. Vis.,
vol. 24, no. 3, pp- 271-300, 1997.

[33] K. Sim and R. Hartley, “Recovering camera motion using /., mini-
mization,” IEEE Conf. Computer Vision and Pattern Recognition, 2006,
pp. 1230-1237.

[34] M. A. Fischler and R. C. Bolles, “RANSAC sample consensus: A
paradigm for model fitting with applications to image analysis and auto-
mated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381-395, 1981.
[35] R. Hartley and A. Zisserman, Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge, MA, Cambridge Univ. Press, 2004.

[36] J. Oliensis, “Exact two-image structure from motion,” IEEE Trans.
Pattern Anal. Machine Intell., vol. 24, no. 12, pp. 1618-1633, 2002.

[37] E. Kruppa, “Zur ermittlung eines objektes aus zwei perspektiven mit
innerer orientierung,” in Proc. Sitz.-Ber. Akad. Wiss.,, Wien, Math.
Naturw. KL, Abt. Ila., 1913, vol. 122, pp. 1939—-1948.

[38] O. Faugeras and S. Maybank, “Motion from point matches: Multi-
plicity of solutions,” Int. J. Comput. Vis., vol. 4, no. 3, pp. 225-246, 1990.
[39] J. Philip, “A non-iterative algorithm for determining all essential
matrices corresponding to five point pairs,” Photogram. Rec., vol. 15,
no. 88, pp. 589-599, 1996.

[40] B. Triggs, “Routines for relative pose of two calibrated cameras from
5 points,” INRIA Rhone-Alpes, Tech. Rep., 2000.

[41] D. Nister, “An efficient solution to the five-point relative pose prob-
lem,” Proc. CVPR03, 2003, pp. II: 195-202.

[42] H. Stewenius, C. Engels, and D. Nister, “Recent developments on
direct relative orientation,” ISPRS J. Photogram. Remote Sens., vol. 60,
no. 4, pp. 284-294, 2006.

[43] O. Pizarro, R. Eustice, and H. Singh, “Relative pose estimation for
instrumented, calibrated imaging platforms,” in Proc. DICTA, 2003,
pp. 601-612.

[44] R. Sturm, “Das problem der projektivitaet und seine anwendung
auf die flaechen zweiten grades,” Math. Annal., vol. 1, no. 4, pp. 533—
573,1869.

[45] C. Geyer and H. Stewenius, “A nine-point algorithm for estimating
paracatadioptric fundamental matrices,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR’07), June 2007, pp. 1-8, 17-22.
[46] P. Sturm and J. Barreto, “General imaging geometry for central cata-
dioptric cameras,” in Proc. 10th European Conf. Computer Vision, Mar-
seille, France, 2008, pp. 609-622.

[47] P. Sturm, S. Ramalingam, J. Tardif, S. Gasparini, and J. Barreto,
“Camera models and fundamental concepts used in geometric
computer vision,” Foundat. Trends Comput. Graph. Vis., vol. 6, no. 1-
2, pp. 1-183,2010.

[48] J. Lim, N. Barnes, and H. Li, “Estimating relative camera motion
from the antipodal-epipolar constraint,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 32, no. 10, pp. 1907-1914, 2010.

[49] F. Fraundorfer, P. Tanskanen, and M. Pollefeys, “A minimal case
solution to the calibrated relative pose problem for the case of two known
orientation angles,” in Proc. European Conf. Computer Vision, 2010,
Pp. 269-282.

[50] O. Naroditsky, X. S. Zhou, J. Gallier, S. I. Roumeliotis, and K.
Daniilidis, “Two efficient solutions for visual odometry using direc-
tional correspondence,” IEEE Trans. Pattern Anal. Machine Intell.,
no. 99, p.1,2011.

[51] L. Kneip, M. Chli, and R. Siegwart, “Robust real-time visual odome-
try with a single camera and an imu,” in Proc. British Machine Vision
Conf.,2011.

[52] D. Ortin and J. M. M. Montiel, “Indoor robot motion based on
monocular images,” Robotica, vol. 19, no. 3, pp. 331-342, 2001.

[53] D. Scaramuzza, “1-point-RANSAC structure from motion for vehi-
cle-mounted cameras by exploiting non-holonomic constraints,” Int. J.
Comput. Vis., vol. 95, no. 1, pp. 74-85, 2011.

[54] D. Scaramuzza, “Performance evaluation of 1-point ransac visual
odometry,” J. Field Robot., vol. 28, no. 5, pp. 792-811, 2011.

[55] P. Torr and A. Zisserman, “Mlesac: A new robust estimator with
application to estimating image geometry,” Comput. Vis. Image Under-
stand., vol. 78, no. 1, pp. 138—156, 2000.

[56] O. Chum and J. Matas, “Matching with prosac—Progressive sample
consensus,” in Proc. CVPR, 2005, pp. 220-226.

[57] D. Nister, “Preemptive ransac for live structure and motion
estimation,” Machine Vis. Applicat., vol. 16, no. 5, pp. 321-329, 2005.

[58] R. Raguram, J. Frahm, and M. Pollefeys, “Exploiting uncertainty in
random sample consensus,” in Proc. ICCV, 2009, pp. 2074—2081.

[59] P. Mcllroy, E. Rosten, S. Taylor, and T. Drummond, “Deterministic
sample consensus with multiple match hypotheses,” in Proc. British
Machine Vision Conf., 2010, pp. 1-11.

JUNE2012 © IEEEROBOTICS & AUTOMATION MAGAZINE * 89

[60] J. Civera, O. Grasa, A. Davison, and]. Montiel, “1-point RANSAC
for ekf filtering: Application to real-time structure from motion and
visual odometry,” J. Field Robot., vol. 27, no. 5, pp. 609—631, 2010.

[61] D. Scaramuzza, A. Censi, and K. Daniilidis, “Exploiting motion pri-
ors in visual odometry for vehicle-mounted cameras with non-holonomic
constraints,” in Proc. IEEE/RS] Int. Conf. Intelligent Robots and Systems,
2011, pp. 4469-4476.

[62] E. Rosten, G. Reitmayr, and T. Drummond, “Improved ransac
performance using simple, iterative minimal-set solvers,” University of
Cambridge, Tech. Rep., arXiv:1007.1432v1, 2010.

[63] O. Chum, J. Matas, and J. Kittler, “Locally optimized ransac,” in
Proc. DAGM-Symp., 2003, pp. 236—243.

[64] R. C. Smith, P. Cheeseman. (1986). On the representation, and esti-
mation of spatial uncertainty, Int. J. Robot. Res., [Online], vol. 5, no. 4,
pp. 56-68. Available: http://ijr.sagepub.com/content/5/4/56.abstract

[65] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of
pose graphs with poor initial estimates,” in Proc. ICRA, 2006,
Pp. 2262-2269.

[66] T. Bailey and H. Durrant-Whyte, “Simultaneous localisation and
mapping (SLAM): Part IL. State of the art,” IEEE Robot. Automat. Mag.,
vol. 13, no. 3, pp. 108-117, 2006.

[67] 1. Ulrich and I. Nourbakhsh, “Appearance-based place recognition
for topological localization,” in Proc. IEEE Int. Conf. Robotics and Auto-
mation, Apr. 2000, pp. 1023-1029.

[68] M. Jogan and A. Leonardis, “Robust localization using panoramic
view-based recognition,” in Proc. ICPR, 2000, vol. 4, pp. 136-139.

[69] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F.
Schaffalitzky, T. Kadir, and L. Van Gool, “A comparison of affine region
detectors,” Int. J. Comput. Vis., vol. 65, no. 1-2, pp. 43-72, 2005.

[70] P. Newman, D. Cole, and K. Ho, “Outdoor SLAM using visual
appearance and laser ranging,” in Proc. IEEE Int. Conf. Robotics and
Automation, 2006, pp. 1180-1187.

[71] M. Cummins and P. Newman, (2008). “FAB-MAP: Probabilistic
localization mapping in the space of appearance,” Int. J. Robot. Res.
[Online], vol. 27, no. 6, pp. 647-665. Available: http://ijr.sagepub.com/
cgi/content/abstract/27/6/647

[72] F. Fraundorfer, C. Engels, and D. Nistér, “Topological mapping,
localization and navigation using image collections,” in Proc. IEEE/RS]
Conf. Intelligent Robots and Systems, 2007, pp. 3872-3877.

[73] F. Fraundorfer, C. Wu, J.-M. Frahm, and M. Pollefeys, “Visual word
based location recognition in 3d models using distance augmented
weighting,” in Proc. 4th Int. Symp. 3D Data Processing, Visualization, and
Transmission, 2008, pp. 1-8.

[74] R. Duda, P. Hart, and D. Stork, Pattern Classification, New York,
Wiley, 2001.

[75] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Conf. Computer Vision and Pattern Recognition, New
York, 2006, pp. 2161-2168.

[76] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon, “Bundle
adjustment a modern synthesis,” in Proc. Int. Workshop Vision Algo-
rithms: Theory and Practice (ICCV’99), 2000, pp. 298-372.

[77] G. Sibley, L. Matthies, and G. Sukhatme. (2010). Sliding window fil-
ter with application to planetary landing. J. Field Robot., [Online], vol. 27,
no. 5, pp. 587-608. Available: http://dx.doi.org/10.1002/rob.20360

90 * IEEEROBOTICS & AUTOMATION MAGAZINE * JUNE 2012

[78] Dacuda AG. (2011). Dacuda scanner mouse. [Online]. Available:
http://www.dacuda.com/

[79] Y. Cheng, M. W. Maimone, and L. Matthies, “Visual odometry on
the mars exploration rovers,” IEEE Robot. Automat. Mag., vol. 13, no. 2,
Pp. 54-62, 2006.

[80] J. Kelly and G. S. Sukhatme. (2007. Sept.). An experimental study of
aerial stereo visual odometry. In Proc. IFAC —Int. Federation of Automatic
Control Symp. Intelligent Autonomous Vehicles, Toulouse, France.
[Online]. Available:
pubid=543

[81] S. Weiss, D. Scaramuzza, and R. Siegwart, “Monocular-SLAM-based
navigation for autonomous micro helicopters in GPS-denied environ-
ments,” J. Field Robot., vol. 28, no. 6, pp. 854-874, 2011.

[82] M. Dunbabin, J. Roberts, K. Usher, G. Winstanley, and P. Corke, “A
hybrid AUV design for shallow water reef navigation,” in Proc. IEEE Int.
Conf. Robotics and Automation, ICRA, Apr. 2005, pp. 2105-2110.

[83] B. P. Foley, K. DellaPorta, D. Sakellariou, B. S. Bingham, R. Camilli,
R. M. Eustice, D. Evagelistis, V. L. Ferrini, K. Katsaros, D. Kourkoumelis,
A. Mallios, P. Micha, D. A. Mindell, C. Roman, H. Singh, D. S. Switzer,
and T. Theodoulou, “The 2005 chios ancient shipwreck survey: New

http://cres.usc.edu/cgi-bin/print.pub.details.pl?

methods for underwater archaeology,” Hesperia, vol. 78, no. 2, pp. 269—
305, 2009.

[84] A. G. Daimler. (2011). 6d vision. [Online]. Available: http://
www.6d-vision.com/

[85] M. Bertozzi, A. Broggi, E. Cardarelli, R. Fedriga, L. Mazzei, and
P. Porta, “Viac expedition toward autonomous mobility [from the
field],” IEEE Robot. Automat. Mag., vol. 18, no. 3, pp. 120-124,
Sept. 2011.

[86] E. Guizzo. (2011). How Google’s self-driving car works. [Online].
Available: http://spectrum.ieee.org/automaton/robotics/artificial-intelli-
gence/howfl-google-self-driving-car-works

[87] D. Scaramuzza and F. Fraundorfer, “Visual odometry,” IEEE
Robotics Automat. Mag., vol. 18, no. 4, pp. 80-92, Dec. 2011.

[88] C. F. Olson, L. H. Matthies, M. Schoppers, and M. W. Maimone,
“Stereo ego-motion improvements for robust rover navigation,” in Proc.
IEEE Int. Conf. Robotics and Automation (ICRA 2001), 2001, vol. 2,
pp. 1099-1104.

[89] M. V. Srinivasan, S. W. Zhang, M. Lehrer, and T. S. Collett,
“Honeybee navigation en route to the goal: Visual flight control and
odometry,” J. Exp. Biol., vol. 199, 1996, pp. 237-244.

[90] P. Viola and M. Jones, “Robust real time object detection,” Int. J.
Comput. Vis., vol. 57, no. 2, pp. 137-154, 2001.

[91] D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense
two-frame stereo correspondence algorithms,” Int. J. Comput. Vis.,
vol. 47, no. 1-3, pp. 742, Apr.—June 2002.

Friedrich Fraundorfer, Institute of Visual Computing,
Department of Computer Science, ETH Zurich, Switzer-
land. E-mail: fraundorfer@inf.ethz.ch.

Davide Scaramuzza, Robotics and Perception Lab,
Department of Informatics, University of Zurich, Switzer-
land. E-mail: davide.scaramuzza@ieee.org.

&

