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Abstract 

We introduce a new approach for  exploration based on the 
concept of frontiers, regions on the boundaly between 
open space and unexplored space. By moving to new fron- 
tiers, a mobile robot can extend its map into new territory 
until the entire environment has been explored. We 
describe a method for  detecting frontiers in evidence grids 
and navigating to these frontiers. We also introduce a 
technique fo r  minimizing specular rejections in evidence 
grids using laser-limited sonar: We have tested this 
approach with a real mobile robot, exploring real-world 
oSJice environments cluttered with a variety of obstacles. 
An advantage of our approach is its ability to explore both 
large open spaces and narrow cluttered spaces, with walls 
and obstacles in arbitrary orientations. 

1.0 Introduction 

While many robots can navigate using maps, few can 
build their own maps. Usually a human must map the ter- 
ritory in advance, providing either the exact locations of 
obstacles (for metric maps) or a graph representing the 
connectivity between open regions (for topological maps). 
As a result, most mobile robots become unable to navigate 
efficiently when placed in unknown environments. 

Exploration has the potential to free robots from this 
limitation. We define exploration to be the act of moving 
through an unknown environment while building a map 
that can be used for subsequent navigation. A good explo- 
ration strategy is one that generates a complete or nearly 
complete map in a reasonable amount of time. 

Considerable work has been done in simulated explo- 
ration, but these simulations often view the world as a set 
of floorplans. The blueprint view of a typical office build- 
ing presents a structure that seems simple and straightfor- 
ward-rectangular offices, square conference rooms, 
straight hallways, and right angles everywhere-but the 

reality is often quite different. A real mobile robot rnay 
have to navigate through rooms cluttered with furniture, 
where walls may be hidden behind desks and bookshelves. 

A few researchers have implemented exploration sys- 
tems using real robots. These robots have performed well, 
but only within environments that satisfy certain restrictive 
assumptions. For example, some systems are limited to 
environments that can be explored using wall-following 
[6], while others require that all walls intersect at right 
angles and that these walls be unobstructed and visible to 
the robot [9]. Some indoor environments meet these 
requirements, but many do not. 

Our goal is to develop exploration strategies for the 
complex environments typically found in real office build- 
ings. Our approach is based on the detection of frontiers, 
regions on the border between space known to be open and 
unexplored space. In this paper, we describe how to detect 
frontiers in occupancy grids and how to use frontiers to 
guide exploration. Then we present results in which a real 
mobile robot used frontier-based exploration to map envi- 
ronments containing offices filled with furniture, hallways 
lined with obstacles, narrow passages, and large open 
spaces. 

2.0 Frontier-Based Exploration 

The central question in exploration is: Given what you 
know about the world, where should you move to gain as 
much new information as possible? Initially, you know 
nothing except what you can see from where you’re stand- 
ing. You want to build a map that describes as much of the 
world as possible, and you want to build this map as 
quickly as possible. 

The central idea behind frontier-based exploration is: 
To gain the most new information about the world, move to 
the boundary between open space and uncharted territory. 

Frontiers are regions on the boundary between open 
space and unexplored space. When a robot moves to a 
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frontier, it can see into unexplored space and add the new 
information to its map. As a result, the mapped territory 
expands, pushing back the boundary between the known 
and the unknown. By moving to successive frontiers, the 
robot can constantly increase its knowledge of the world. 
We call this strategy frontier-based exploration. 

If a robot with a perfect map could navigate to a par- 
ticular point in space, that point is considered accessible. 
All accessible space is contiguous, since a path must exist 
from the robot’s initial position to every accessible point. 
Every such path will be at least partially in mapped terri- 
tory, since the space around the robot’s initial location is 
mapped at the start. Every path that is partially in 
unknown territory will cross a frontier. When ihe robot 
navigates to that frontier, it will incorporate more of the 
space covered by the path into mapped territory. If thc 
robot does not incorporate the entire path at one time, then 
a new frontier will always exist further along the path, sep- 
arating the known and unknown segments and providing a 
new destination for exploration. 

In this way, a robot using frontier-based exploration 
will eventually explore all of the accessible space in the 
world-assuming perfect sensors and perfect motor con- 
trol. A Zcno-like Paradox where the new information con- 
tributed by each new frontier decreases geometrically is 
theoretically possible (though highly unlikely), but even in 
such a case, the map will become arbitrary accurate in a 
finite amount of time. 

The real question is how well frontier-based explora- 
tion will work using the noisy sensors and imperfect motor 
control of a real robot in the real world. This is the ques- 
tion that this research is intended to address. 

2.1 Laser-Limited Sonar 

We use evidence grids 171 as our spatial representa- 
tion. Evidence grids are Cartesian grids containing cells, 
and each cell stores the probability that the corresponding 
region in space is occupied. Initially all of the cells are set 
to the prior probability of occupancy, which is a rough 
estimate of the overall probability that any given location 
will be occupied. Each time a sensor reading is obtained 
from the robot’s sonar, infrared, or laser rangefinders, the 
corresponding sensor model is uscd to update the grid. 

The main problem with sonar sensors is that instead 
of bouncing back toward the sensor, the sound pulse can 
hit a flat surface and bounce away from the sensor. Then 
either the sonar senses nothing, or it senses objects that, 
like reflections in a mirror, appear to be much farther away 
than the nearest surface. 

These reflections could cause difficulties for frontier- 
based exploration, not only due to inaccuracies in the map, 
but also because specular reflections oftcn appear as large 

open areas surrounded by unknown territory. As a result, 
the robot could waste a great deal of time trying to reach 
non-existent fronticrs. 

Fortunately, we have found a way to substantially 
reduce the effect of specular reflections on evidence grids. 
The standard evidence grid formulation assumes that each 
sensor reading is independent of every other sensor read- 
ing. In reality, this is not the case-and we take advantage 
of this with a technique we call laser-limited sonar. We 
use a laser rangefinder in combination with the sonar sen- 
sors, and if the laser returns a range reading less than the 
sonar reading, we update the evidence grid as if the sonar 
had returned the range indicated by the laser, in addition to 
marking the cells actually returned by the laser as occu- 
pied. 

Why not just use the laser? Because the laser operates 
in a two-dimensional plane, while the sonar projects a 
three-dimensional cone. !So, any object that is above or 
below the laser plane will be invisible to the laser, but still 
detectable by the sonar. Another alternative would be to 
use a three-dimensional laser rangefinder, but at present, 
such devices are too large, too expensive, and too power- 
hungry to be commonly available on mobile robots. 

Laser-limited sonar isn’t perfect-it is still possible to 
get specular reflections from obstacles undetected by the 
laser-but in practice, we have found that it drastically 
reduces the number of uncorrected specular reflections 
from walls and other large obstacles, which tend to be the 
major sources of errors in evidence grids built using sonar. 

2.2 Frontier Detection 

After an evidence grid has been constructed, each cell 
in the grid is classified by comparing its occupancy proba- 
bility to the initial (prior) probability assigned to all cells. 
This algorithm is not particularly sensitive to the specific 
value of this prior probability. (A value of 0.5 was used in 
all of the experiments described in this paper.) 

Each cell is placed into one of three classes: 

* open: occupancy probability < prior probability 
* unknown: occupancy probability = prior probability 
0 occupied: occupancy probability > prior probability 

A process analogous to edge detection and region 
extraction in computer vision is used to find the bound- 
aries between open space and unknown space. Any open 
cell adjacent to an unknown cell is labeled a frontier edge 
cell. Adjacent edge cells are grouped into frontier regions. 
Any frontier region above a certain minimum size 
(roughly the size of the robot) is considered a frontier. 
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Figure 1: Frontier detection: (a) evidence grid, (b) frontier edge segments, (c) frontier regions 

Figure l a  shows an evidence grid built by a real robot 
in  a hallway adjacent to two open doors. Figure l b  shows 
the frontier edge segments detected in the grid. Figure IC 
shows the regions that are larger than the minimum fron- 
tier size. The centroid of each region is marked by 
crosshairs. Frontier 0 and frontier 1 correspond to open 
doorways, while frontier 2 is the unexplored hallway. 

2.3 Navigating to Frontiers 

When the robot reaches its destination, that location is 
added to the list of previously visited frontiers. The robot 
performs a 360 degree sensor sweep using laser-limited 
sonar and adds the new information to the evidence grid. 
Then the robot detects frontiers present in the updated grid 
and attempts to navigate to the nearest accessible, unvis- 
ited frontier. 

If the robot is unable to make progress toward its des- 
tination, then after a certain amount of time, the robot will 
determine that the destination in inaccessible, and its loca- 
tion will be added to the list of inaccessible frontiers. The 
robot will then conduct a sensor sweep, update the evi- 
dence grid, and attempt to navigate to the closest remain- 
ing accessible, unvisited frontier. 

Once frontiers have been detected within a particular 
evidence grid, the robot attempts to navigate to the nearest 
accessible, unvisited frontier. The path planner uses a 
depth-first search on the grid, starting at the robot's current 
cell and attempting to take the shortest obstacle-free path 
to the cell containing the goal location. 

While the robot moves toward its destination, reactive 
obstacle avoidance behaviors prevent collisions with any 
obstacles not present while the evidence grid was con- 
structed. In a dynamic environment, this is necessary to 
avoid collisions with, for example, people who are walk- 
ing about. These behaviors allow the robot to steer around 
these obstacles and, as long as the world has not changed 
too drastically, return to follow its path to the destination. 

3.0 Experiments 

Frontier-based exploration has been implemented on a 
Nomad 200 mobile robot equipped with a laser 
rangefinder, sixteen sonar sensors, and sixteen infrared 
sensors. Laser-limited sonar is used to build evidence 
grids, combining the data from the forward-facing sonar 
with the data returned from the (forward-facing) laser 
rangefinder. At extremely short ranges (less than 16 
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inches), range data from the infrared sensor is used 
instead. All sixteen sonar and infrared sensors are used for 
obstacle avoidance. All computation for frontier-based 
exploration is performed by an offboard Sparcstation 20. 
The process running on the workstation communicates 
with the robot’s onboard 486 processor via a radio ether- 
net. 

We have conducted experiments using frontier-based 
exploration in two different real-world office environ- 

ments. The first environment included a hallway and an 
adjacent office. This environment contained chairs, desks, 
tables, bookcases, filing cabinets, a sofa, a water cooler, 
and boxes of varying size and shape. 

Figure 2 shows the results from a trial in which the 
robot started in the hallway, used frontier-based explora- 
tion to detect and enter an open doorway, and then 
explored the adjacent office (23 feet x 20 feet) thoroughly. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 2: Frontier-based exploration of an office 
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Cells with low occupancy probability are represented 
by white space; cells with unknown occupancy probability 
are represented by small dots; and cells with high occu- 
pancy probability are represented by large dots. The 
robot’s position is represented by the black circle with a 
line marking the robot’s orientation. The robot’s path is 
indicated by the black line. 

In Figure 2a, the robot starts in the center of the hall- 
way, builds an evidence grid using laser-limited sonar, and 
detects three frontiers. The robot navigates to the closest 
frontier, Frontier 1. In Figure 2b, the robot has arrived at 
its destination and added the observations from its new 
location to the evidence grid. The robot detects two fron- 
tiers and navigates to the closest, Frontier 0. This frontier 
corresponds to an open doorway leading to an unexplored 
office. (Frontiers are numbered based on the current grid, 
so Frontier 2 in Figure 2a is the same as Frontier 1 in 
Figure 2b.) In Figure 2c, the robot has moved through the 
doorway, detecting a new frontier in the center of the room 
at the boundary of its usable sonar range (ten feet). 

Figure 2d shows the robot after it has explored more 
of the office. The robot detects five frontiers in this grid, 
and i t  navigates to the closest, Frontier 2. In Figure 2e, the 
robot detect six frontiers, but the two closest frontiers are 
inaccessible. Frontier 1 is between a chair and a desk, and 
Frontier 2 is a narrow gap between two desks. In both 
cases, there is insufficient clearance to allow the robot to 
navigate to the frontier, so the robot navigates to the near- 
est accessible frontier, Frontier 0. 

In Figure 2f, the robot has completed its exploration 
of the office. The total time required was about half an 
hour. An improved version of this system can map the 
same office in about fifteen minutes. 

The two remaining frontiers are the result of specular 
reflections from sonar hitting obstacles that are difficult to 
detect using the laser (from certain angles). Frontier 0 cor- 
responds to a black filing cabinet, and Frontier 1 corre- 
sponds to a gray bookshelf. The robot’s path planner 
determines that both of these frontiers are inaccessible, so 
it plans a path to Frontier 2 in the hallway. The robot then 
follows this path out of the office to further explore the 
building. 

Frontier-based exploration has also been tested in a 
large lab/office area. Figure 3 shows the evidence grid 
constructed during this exploration. The lab area, at the 
top of the image, contains large open spaces as well as 
large crates, small boxes, chairs, tables, and bookshelves. 
The office area, at the bottom of the image, is narrow and 
cluttered with chairs, desks, and workstations that require 
precise navigation to avoid collisions with obstacles. 
Although the total area is larger (45 feet x 25 feet), the 
robot was able to map the open spaces quickly, mapping 
the entire environment in about half an hour. 

Figure 3: Evidence grid from frontier-based 
exploration of a large labloffice area 

4.0 Related Work 

Considerable research has been done in robot map- 
building, but most of this research has been conducted in 
simulation [4] or with robots that passively observe the 
world as they are moved by a human controller [2] [3]. 
However, a few systems for autonomous exploration have 
been implemented on real robots. 

Mataric [6] has developed Toto, a robot that combines 
reactive exploration, using wall-following and obstacle- 
avoidance, with a simple topological path planner. The 
reactive nature of Toto’s exploration limits its ability to 
map environments where wall-following is insufficient to 
explore the complex structure of the world. 

We previously developed a reactivehopological explo- 
ration system [lo] for ELDEN. This system had the 
advantage of being able to adapt its topological map to 
changes encountered in the environment. However, it also 
suffered the limitations of a purely reactivc exploration 
strategy, in terms of the size and complexity of the envi- 
ronments that it could explore efficiently. 

Connell [ I ]  has developed a simple exploration sys- 
tem to demonstrate his SSS architecture. This system was 
limited to mapping hallways where doors and corridors 
intersect at 90 degree angles. 

Lee [5] has implemented Kuipers Spatial Semantic 
Hierarchy [4] on a real robot. However, this approach also 
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assumes that all walls are parallel or perpendicular to each 
other, and this system has only been tested in a simple 
environment consisting of a three corridors constructed 
from cardboard barriers. 

Thrun and Bucken [9] have developed an exploration 
system that builds a spatial representation that combines 
evidence grids with a topological map. This system has 
been able to explore the network of hallways within a 
large building. While this approach works well within the 
hallway domain, it assumes that all walls are either paral- 
lel or perpendicular to each other, and that they do not 
deviate more than 15 degrees from these orientations. An 
implicit assumption is that walls are observable and not 
obstructed by obstacles. These assumptions make this 
approach unsuitable for rooms cluttered with obstacles 
that may be in arbitrary orientations. 

A robot using frontier-based exploration has three 
advantages over the systems described above. First, it can 
explore environments containing both open and cluttered 
spaces. Second, it can explore environments where walls 
and obstacles are in arbitrary orientations. Third, it can 
explore efficiently by moving to the locations that are most 
likely to add new information to the map. 

5.0 Conclusions and Future Work 

In this paper, we have introduced a new approach to 
exploration based on the concept of frontiers, regions on 
the boundary between open space and unexplored space. 
By constantly moving to new frontiers, a mobile robot can 
extend its map into new territory until the entire environ- 
ment has been explored. We have described and imple- 
mented a method for detecting frontiers in evidence grids 
and navigating autonomously to these frontiers. We have 
also introduced a technique for minimizing specular 
reflections in evidence grids using laser-limited sonar. We 
have tested this approach with a real mobile robot, by 
exploring two different real-world office environments 
cluttered with a variety of obstacles. 

We have recently integrated frontier-based explora- 
tion with the continuous localization techniques developed 
by Schultz, Adams, and Grefenstette [8]. The integrated 
system is designed to explore large environments while 
maintaining an accurate position estimate. Initial results 
have been very promising, and we are currently conduct- 
ing experiments to test the performance of the integrated 
system. 
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