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It is shown that from a monocular view of a rigid, textured, curved
surface it is possible, in principle, to determine the gradient of the
surface at any point, and the motion of the eye relative to it, from the
velocity field of the changing retinal image, and its first and second
spatial derivatives. The relevant equations are redundant, thus providing
a test of the rigidity assumption. They involve, among other observable
quantities, the components of shear of the retinal velocity field, suggesting
that the visual system may possess specialized channels for computing
these components.

1. INTRODUCTION

When the eye is in motion relative to the visible environment, a moving pattern
of light falls upon the retina, and the resulting ‘optical flow field’ supplies useful
information not only about the motion but also about the three-dimensional
structure of the scene (Helmholtz 1925; Gibson 1950, 1966, 1979; Gibson et al.
1955, 1957, 1959; Braunstein 1976). This information is inadequate, in general,
for establishing the relative distances and velocities of all of the visible elements
in the scene, if only because the line-of-sight velocity of a point source makes no
difference to the retinal velocity of its image. But in practice the scene will
usually consist of rigid objects of finite extent, and, if this condition is satisfied,
the assumption of local rigidity can lead to a unique, and correct, three-dimensional
interpretation of the moving retinal image (Ullman 1979).

There have been two somewhat different approaches to the interpretation of
visual motion. One is based on an analogy with stereopsis, and the other appeals
to the existence of receptors that respond to visual stimuli moving across the
retina with specific velocities (Hubel & Wiesel 1968 ; Bridgeman 1972 ; Grusser &
Grusser 1973; Sekuler & Levinson 1974, 1977). In the quasi-stereoscopic theory
the visual problem is seen as that of collating the information from two or more
discrete views of the scene. The first stage is to solve the ‘ correspondence problem’
(Marr & Poggio 1976; Ullman 1979), that of establishing which elements in
each image correspond to the same element in the scene; the second stage is to
compute the structure from the finite disparity between the retinal positions of
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corresponding elements (Ullman 1979). The other approach (Gibson et al. 1955;
Gordon 1965 ; Lee 1974 ; Koenderink & van Doorn 1976) takes as given the optical
flow field itself, and attempts to infer the relative motion and the three-dimensional
structure on the assumption that the scene is indeed locally rigid.

Whichever approach one decides to adopt, there is no great problem in calcu-
lating how the retinal image changes when the eye moves in a given manner
relative to a scene of specified geometry. The real difficulties begin when one
addresses the converse problem, that of proceeding from the optical flow field to
conclusions about the motion and the structure. The difficulties are not severe if
one assumes that the motion has no rotational component (Gibson et al. 1955 ; Lee
1974) or that its translational component is known (Koenderink & van Doorn
1976); but it is by no means obvious whether the visual system could, in principle,
compute both the translational and the rotational motion of the eye relative to
the scene, from the optical flow field alone. This is the problem that we consider
in the present paper.

The plan of the paper is as follows. In §2 we examine the form of the optic
flow field due to arbitrary motion relative to a rigid scene. In the most general
case the field is found to be the vector sum of a translational component and a
rotational component. The translational velocity at any point is directed towards
or away from a unique ‘vanishing point’ determined by the relative translational
motion. The rotational velocity field is fully determined by the angular velocity
of the eye relative to the environment; it is entirely independent of the structure
of the scene. Motion parallax cues (Helmholtz 1925), when they are available,
are shown to provide a means of calculating both the translational and the
rotational component of the relative motion; once this has been achieved, the
structure of the scene can be fully determined from the translational component
of the flow field.

In §3 we consider the case of a scene consisting of arbitrarily moving rigid
objects with smooth, densely textured surfaces. The problem is to determine the
translational and rotational motion of a given object, and the gradient of its
surface at any point (Marr 1976), from the optic flow field due to the nearby
texture elements. It is shown that all these unknowns may be computed from
the field and its first and second spatial derivatives at the corresponding point on
the retina. The first derivatives may be expressed in terms of the invariants
discussed by Koenderink & van Doorn (1976), but the second derivatives are
also needed for a full determination of the relative motion. They supply, inci-
dentally, a check on the assumption of local rigidity. Plane surfaces are found
to present special problems of visual interpretation.

Finally, in §4, we raise the possibility that the visual system may possess
receptors that respond specifically to local deformations of the optic flow field,
due to relative motion of neighbouring elements of the retinal image.
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2. MOTION THROUGH A STATIC ENVIRONMENT

To gain a qualitative insight into the form of the optic flow field it is helpful to
think of the eye as a hemispherical pinhole camera, in arbitrary motion through
a static environment. The motion at any instant may be resolved into two
components: the translational velocity of the pinhole relative to the scene, and

(a)

Ficure 1. Typical translational (‘polar’) and rotational (‘axial’) components
of the flow field on a hemispherical retina.

the angular velocity of the hemisphere about the pinhole, also measured relative
to the scene. In purely translational motion (for which the angular velocity
vanishes) the optic flow takes on a specially simple form: if the line of motion of
the pinhole O intersects the hemisphere at the point @, then every other image
point on the hemisphere will move along the great circle that joins it to the point
@ (Nakayama & Loomis 1974). So if @ is regarded as a ‘pole’ on the hemisphere,
a purely translational field is one for which the image velocity is everywhere
directed along ‘lines of longitude’, having a magnitude that depends on the
detailed geometry of the scene (see figure 1a).

If the hemisphere is rotating as well as translating, then every image point
will acquire an additional velocity component corresponding to a rigid rotation of
the hemisphere about some radius OR. The most general flow field due to motion
through a static environment is thus the vector sum of a ‘polar’ field due to the
translation, and an ‘axial’ field due to the rotation; but there is no relation, in
general, between the directions 0@ and OR. The problem of ‘interpreting’ the
flow field amounts, then, to resolving it into an axial field (completely determined
by the three components of the angular velocity) and a polar field attributable to
the translation. If such a resolution can be effected, the presumption of a rigid
scene is confirmed, and the three-dimensional structure follows straightforwardly
from the translational field component (Gibson et al. 1955; Lee 1974).

14-2
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The analysis that follows is largely concerned with the task of resolving the
optic flow field into its rotational and translational components. In describing the
flow field due to motion through a rigid scene we have been idealizing the retina
as a hemisphere, for which spherical polar coordinates might be thought appro-
priate; but the choice of retinal coordinates is entirely a matter of convenience,

YIl

Ficure 2. An external coordinate system OXYZ moving with the eye, and the
corresponding retinal coordinates (z, y). The distance OP, equals R.

and we prefer to work with plane projective coordinates (x, ), having the property
that a great circle on the hemisphere corresponds to a straight line in the (x, y)
plane. The reader who feels uncertain on this point may care to note that although
the retina is not planar, neither is it a hemisphere with the lens at its centre; any
retinal coordinate system is equally legitimate provided that it does not mis-
represent the topology of the retinal image.

Consider a monocular observer moving through a static environment. Let O be
the instantaneous position of the nodal point of the eye and let OXYZ be an
‘external’ Cartesian coordinate system that is fixed with respect to the eye, 0Z
being the line of sight. Let (U, V, W) be the translational velocity of OXYZ
relative to the scene, and let (4, B, O) be its angular velocity. Then if (X, Y, Z)
are the instantaneous coordinates of a texture element P in the scene, the velocity
components of P in the moving frame will be (see figure 2):

X = -U-BZ+C(CY,
Y= -V-CX+A4Z, (2.1)
Z = —-W—-AY +BX.
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The retinal position of p, the image of P, may conveniently be represented by
the ‘internal’ coordinates

(@, y) = (X/Z, Y/Z); (2.2)
it will move across the retina with velocity
(u, v) = (%, ¥). (2.3)
Substituting from (2.1) and (2.2) into (2.3) we obtain
w=X/2-X7/7* = (-U/Z—-B+Cy)—x(—W/Z— Ay + Bx), (2.4)
v=Y/Z-YZ]7? = (-V]/Z—-Cx+A)—y(—W/Z— Ay + Bx), (2.5)

and these equations may be written in the form

w=ul+u®, v =0T +oR, (2.6)
with ul = (=U+aW)/Z, T = (-V+yW)/Z, (2.7)
and uf = —B+Cy+ Azy— Bx?, v® = —Cx+ A4+ Ay?— Buy. (2.8)

The retinal velocity field is therefore the vector sum of a translational component
(wT, ¥T) that is independent of (4, B, C) and a rotational component (u®, v®)
that is independent of the three-dimensional structure of the scene. Introducing
the coordinates

g =U/W, yo,=TV/W, (2.9)
we may write the translational component in the form
ul = (w—2g)W/Z, v* = (y—y,)W/Z. (2.10)
It follows that
T/t = (y—yo)/(x— ), (2.11)

and that the translational flow component is everywhere along straight lines that
meet at the ‘vanishing point’ (2, ¥,).

So, if the observer is able to resolve the retinal flow field into a rotational
component of the form (2.8) and a translational component that is everywhere
directed away from (or towards) some retinal point (%,, y,), not only will this
confirm his presumption that the scene is rigid, but also he will be able to compute
his direction of motion,

U VW = wx5:y,:1, (2.12)
and even to determine the relative depths of all the texture elements in the scene:
ZIW = (=) /u" = (y—yo)/v". (2.13)

But to effect this resolution he must first find values of (4, B, C,) such that when
the corresponding rotational field, given by (2.8), is subtracted from (u, v), the
difference (uT, vT) is indeed identifiable as a pure translational field from which
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the structure of the scene can be found. The question thus arises: how can the
observer discover what value to assign to his relative angular velocity (4, B,C)?

One very useful source of information, when it is available, is motion parallax
(Helmholtz 1925). If, for example, the observer is walking past a dusty window,
then two distinct flow fields will be generated on his retina, one due to the dust
particles and the other due to the texture elements behind the window. (This
situation illustrates the fact that the optic flow field is not necessarily a single-
valued function of retinal position; it is possible, and indeed common, for distinct
texture elements to cast their images, momentarily, on the same retinal point.)

Suppose, then, that at the time of observation there are two texture elements,
P, and P,, lying in the same direction (z, y) but at different depths, Z, and Z,.
Then their images p, and p, will have the same rotational velocities (u®, v®) but
will differ in their translational velocities (™, ¢T). Hence the difference in the
retinal velocities of p, and p, will be

Uy —Uy = (= U+aW) (1/Z,—1/Z,) (2.14)

and v —vy = (= V+yW)(1/Z,—1/Z,), (2.15)
from which it follows that

(03— /(g —1g) = (= V+yW)/(—= U+aW) = (y—yo)/(@—2).  (2.16)

The relative velocity (u,—u,, v;—v,) at (x, y) therefore points directly towards,
or away from, the vanishing point (x,, ¥,), and this point can be located by using
the motion parallax at a number of separate retinal positions. The concurrence
of the relative velocity vectors at these positions supports the presumption that
the scene is rigid.

Motion parallax thus enables the observer to locate the vanishing point
(9> ¥o) and hence to calculate his direction of motion from (2.12). But to calculate
the relative Z coordinates of any two elements he also needs to know the angular
velocity (4, B, C), and this he can compute as follows.

For any point on the line (x = #,), the value of  is given by

w(y, y) = —B+Cy+ Awyy — Bxj. (2.17)

It follows that a plot of u(x,, ¥) against y is a straight line of slope (C'+ Ax,) and
intercept — B(1+x3). Likewise, a plot of v(x, y,) against x is a straight line of
slope — (C'+ By,) and intercept A(1+¥3):

v(, yy) = Cx+ A+ Ay — Bxy,. (2.18)
Knowing x, and y,, the observer can thus compute (4, B, C) without difficulty;

having done so, he can then obtain the relative depths of the texture elements
from (2.19),

ZIW = (x—2,)/(w—uR) = (y—yo)/(v—0"), (2.19)

where u® and v® have been calculated from (2.8). To speak of the observer
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solving such equations is not, of course, to imply that the visual system performs
such calculations exactly as a mathematician would: its modes of operation may
well be more ‘geometrical’ than ‘algebraic’, and the same applies to the other
computations envisaged in this paper. Our main point is that the equations
demonstrate the feasibility of calculating both the motion and the structure
from the optic flow field alone.

But, if motion parallax cues are not readily available, or, if parts of the scene
are in relative motion, then these methods fail. We therefore turn, in the next
section, to the problem of determining the motion and the structure of an object
with a smooth, densely textured surface.

3. MOTION RELATIVE TO A VISUALLY TEXTURED SURFACE

If the scene consists of a number of rigid objects in relative motion, then, to
determine his motion relative to any one of them, the observer will have to rely
on information from a limited part of the visual field. We therefore envisage a
situation in which the object of interest has a smooth, densely textured surface S;
the observer’s task is then to determine his motion relative to S, and the gradient
of the surface at any given point P, lying on it.

Since P, is not necessarily in the observer’s line of sight, we now adopt a
coordinate system, OX YZ, that is orientated in such a way that P, has the co-
ordinates (0, 0, R) at the time of observation. As before, OXYZ is assumed to
move with the observer’s eye. The surface S may then be described by the
equation

Z(X,Y) = R+aX+8Y+0, (X, Y),+ (3.1)

where (a, ) is the gradient of § at P,. If (x, y) = (X/Z, Y/Z) are local retinal
coordinates, then equations (2.4) and (2.5) hold in the new interpretation, so that

u = (—U+aW)/Z—-B+Cy+ Axy— Ba?, (3.2)
v=(=V+yW)/Z—-Cx+ A+ Ay*— Bxy. (3.3)
Introducing the dimensionless depth coordinate
2= (Z—-R)/Z = ax+fy+0,(z, y) (3.4)
and the depth-scaled velocities
ug = U/R, vy=TV/R, wy,= W/R, (3.5)
we may write (3.2) and (8.3) in the forms
U = (—uy+rwy) (1—2)—B+Cy+ Axy — Bx?, (3.6)
v = (—vy+ywy) (1—2)—Cx+ A+ Ay?— Bxy. (3.7)

T 0, (X, Y) means ‘terms of the second order in X and Y.
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(The local coordinates of p,, the image of P,, are, of course, (z, y) = (0, 0).) The

question now arises: can the observer derive all the unknown parameters u,, v,,

wy, 4, B, C, a and S from the velocity field (u, ») in the immediate neighbourhood
of po?

Since § is smooth, by hypothesis, the derivatives of » and v with respect to

x and y are well defined. At the point p,, where x = y = z = 0, v and v take the
values

U= —uy—B, v= —v+4; (3.8)

their first derivatives are found to be

Uy = Ugo+wy, U, = uf+C, 1
(3.9)
vy = vea—C, v, = vf+w,y, j

since 2, = a, z, = f. (3.10)

If u, and v, could only be found, (3.8) would immediately give the values of 4
and B, and (3.9) would supply the values of w,, C, « and f; but, as the equations
stand, the values of o and f are inseparable from those of u, and v,, and, in
particular, there is no way of finding the relative magnitudes of these two pairs
of quantities. This is the familiar problem of the ‘indeterminate depth scale’, in
a new guise.

There is, however, a way round the difficulty. The translational components of
u and v correspond, as shown in the previous section, to flow along lines through
the vanishing point

(%o, Yo) = (ue/ws, Vo/wy). (3.11)
Writing (3.6) in the form
w = (¥ —x,) wy(1—2)— B+ Cy+ Axy — Ba?, (3.12)
we see that, if the (z, y) axes are reorientated in such a way that the y axis passes
through (,, ¥,), then (3.12) reduces to
u = awy(l —2z)— B+ Cy+ Axy — Ba?, (3.13)

where all quantities now refer to the new coordinate system (see figure 3).
On the y axis, where x = 0, 4 now assumes a particularly simple form, namely

u(0,y) = —B+Cy. (3.14)

This equation asserts, in effect, that all those image points that lie on the (new)
y axis at time ¢ will still lie on a straight line at ¢+ 8¢, namely the line

x = (—B+COy) dt+0,(8t). (3.15)

In general, furthermore, there will be only one straight line of image points,
through the origin, that at the time of observation is not bending in the (z, ¥)
plane. Equations for finding this line, when it is unique, are given in the appendix,
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where it is also shown that, if S is planar, every line through the origin has this

property, so that the present analysis fails.

If the unbending line is indeed unique, then, once it has been located and

adopted as the y axis, the problem is largely solved. For, by (3.11),

Uy = oWy = 0,

y(old) y(new)
A A(x0,5)
7
/
7/
Id
/
7
/7
’
/
/
4
7/
» x(old)
N
AN
N\
N
N\
N\
\
\x(new)
Ficure 3
so that at the origin
u=—B, v= —y+4,
Uy = Wy, U, = O,
v, = voaa—C, v, = vf+w,,
and, by (3.13),
Uy = —2wWot—2B, wu,, = —wyf+A4.

(3.16)

(3.17)

(3.18)

(3.19)

Expressions (3.17-19) constitute eight equations for the seven unknown quan-
tities, 4, B, C, vy, w,, « and f; their consistency is a necessary condition for S

to be rigid. The solution is immediate. By (3.17) and (3.18),

B=—u, wy=u, OC=u,
and substitution in the first of equations (3.19) gives
o= (u— %u:ta:)/ux
Introducing the observable quantities (see figure 4)

P =Uy—0,, O =U,+0,,
we infer from (3.18) that
Voo = 0, vf = —p,

whence vy = o/a, = —p/v,.

(3.20)

(3.21)

(3.22)

(3.23)
(3.24)
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Finally, then, by (3.17),
A = v+, (3.25)

and it only remains to check that u,, satisfies the second of equations (3.19).

Equations (3.20)—(3.25) show that if and when a unique ‘unbending line’ of
image points can be identified, then, if it is selected as the y axis, the seven
parameters of relative motion (excluding u,, which now vanishes) can be simply
expressed in terms of the first derivatives of u and v with respect to x and ¥, and
the second derivatives of u with respect of these variables.

There is, however, one perceptual situation that merits special discussion,
namely that in which the observer’s eye is turning steadily so as to maintain the
point Py at the origin in the (z, y) plane. In this case the velocity (u, ») vanishes
there, and, according to (3.17),

B=0, A-=u, (3.26)

It may then be preferable to calculate o from v,, rather than from (3.21), since
if w, is small this equation is ill-conditioned. Combining (3.19) and (3.26), we now
obtain

Uy = —2Wo0, Vg = Uy, + Wy f, (3.27)

and from (3.23) we deduce that
Vg = Ugy + Plhyy/20°. (3.28)

The gradient («, £) is then calculated from (3.23), and the final check of con-
sistency is supplied by the first of equations (3.27), with w, set equal to u,.

It appears, then, that the observer gains certain computational advantages
from tracking with his eye any surface whose gradient and relative motion are of
special interest to him; this is an intuitively reassuring result.

4. DIscUsSION

What we have shown, in effect, is that an observer can in principle determine
the structure of a rigid scene and his direction of motion relative to it from the
instantaneous retinal velocity field. If the scene consists of separate objects in
relative motion, then a separate computation must be carried out on each one,
requiring access to the flow at some retinal point and its first and second spatial
derivatives at that point. Each computation checks the rigidity assumption on
which it is based.

Whether the visual system actually operates in this way is, of course, another
matter. Ullman has argued cogently (Ullman 1979) for a ‘polar-parallel’ scheme,
which requires a time long enough for the observer to obtain at least three
sufficiently distinct views of each object to determine its structure. The present
scheme requires, instead, that the neighbourhoods involved in local computations
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subtend an angle large enough for the second derivatives of u and v to be estimated
with accuracy.

Leaving aside the relative merits and domains of application of the two schemes,
there is one feature of equations (3.23) ef seq. to which we would like to draw
attention, namely the quantities p and o defined in (3.22). As pointed out by
Koenderink & van Doorn (1976), there are four independent combinations of the
flow field derivatives that have specially simple transformation properties under
rotation of the retinal axes, and these combinations are illustrated in figure 4.

€
VAN N 7
4 N //I N PEERN J AN 1
e N Vi N\ Ve \ Vs \
<« — < P~
N 4 N 7 N s b 7/

N / N i , N 7 N 7
N N |/ \ 7 AN
dilatation components of shear vorticity
B= Uyt Uy P = Ug—Vy O =Uy+Vy Azuv‘“’uz

Ficure 4

The dilatation, x, and the vorticity, A, are separately invariant under rotation;
the two components of shear, encountered in (3.22), are mixed together (but not
with A or u) when the axes are rotated through an angle 6:

p = p cos 20 + o sin 20, (4.1)
o - —psin 20+ 0 cos 26. (4.2)

It would therefore not be surprising if the human visual system possessed channels
tuned to these four basic types of ‘relative’ motion, as well as the ‘absolute’
motion channels implicated, for example, in the waterfall illusion. Evidence has
quite recently been obtained (Regan et al. 1978a, b, 1979) for channels sensitive
to dilatation; if there also exist shear- and vorticity-sensitive channels, it might
be possible to demonstrate their existence psychophysically.

APPENDIX

The computation described in §3 hinges on the possibility of finding the line
that joins the retinal origin to the vanishing point (z,, 7,). This line has the
peculiar property that image points lying on it at time ¢ will still be in a straight
line at time ¢+ 8¢; and, if it is adopted as the y axis of a new coordinate frame,
then the required kinematic parameters are simple functions of the retinal image
velocity and its first and second derivatives in that frame.

In the original (x, ) system, by (3.11),

Yo/ %o = Vo/Uq, (A1)
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and so the problem reduces to determining this ratio. Now, according to (3.6)
and (3.7),

Ugy = UgZge— 2Wo0— 2B, ¥y = Vo2,
Uy = UpZgy—Wof+ 4, Vay = VoZgy —Wot— B, (A 2)
Uyy = UgZyy, Vyy = VoZyy— 2wof+24.

If the surface is highly curved at P,, with radii of curvature much less than R
(the distance of P; from the eye), then the terms in z,,, z,,, 2,, will outweigh the
others, so that, to a first approximation,

Vo/ Uy = Vi Uy = Vg Uy = Vypp[ Uy, - (A3)

But, if these ratios are markedly unequal, a more accurate calculation is needed.
By (A 2),

Uy — LWy = UgZgg— 20020y,  VoZp = vxw’} (A 4)
Vyy— Uy = VoZyy— 2UgZgy,  UgZyy = Uy,
Elimination of z,,, 2,,, z,, between these equations leads to
UV + UFVY (20, — Ugy) + 1o V(0 — 2u,, ) — ViU, = O (A 5)
and this may be written in the alternative form
t = (10131 + 2tvx?/ + t2v?/1/)/(u$$ + 2tuac1/ + tzu?/?/)’ (A 6)
where t = vy/uy. (A7)

(A 6) is a cubic equation in the required ratio ¢, but the relevant root can be
quickly found by iteration if a first approximation is available from (A 3).

Difficulties arise, however, if S is planar, because then z and z,, all
vanish, and so do all the coefficients in (A 5):

Uy — 20y, = 0, Wy = 0,}

—2uy, = 0, u,, =0.

xx> zwy

(A 8)

Yyy
Planarity is thus easily detected, but to determine the kinematic parameters is
surprisingly difficult. One finds, in fact, that, when the second derivatives of z are
set equal to zero in (A 2), the solution of these equations involves extracting the
roots of a cubic equation; but there is no obvious way of calculating the appro-
priate root. Ullman’s polar—parallel scheme (Ullman 1979, p. 173) also encounters
difficulties with planar objects.
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