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Abstract 

The problem of synthesizing and analyzing collective autonomous agents has only recently begun to be practically 
studied by the robotics community. This paper overviews the most prominent directions of research, defines key terms, and 
summarizes the main issues. Finally, it briefly describes our approach to controlling group behavior and its relation to the 
field as a whole. 

1. Introduction 2. Overview of multi-agent work 

The problem of synthesizing and analyzing col- 
lective autonomous behavior has only recently be- 
gun to be practically studied by the robotics commu- 
nity. This paper gives on overview of the directions 
taken by the different areas of artificial intelligence 
and robotics and the progress that has been made. 
Section 2 overviews the relevant work in the field. 
Section 3 defines key terms and summarizes some of 
the main issues. Section 4 describes the fundamen- 
tal means of approaching the multi-agent control and 
analysis problem. Section 5 briefly describes our ap- 
proach to controlling group behavior and relates it to 
the field as a whole. 

* The work reported here was performed at the MIT Artificial 
Intelligence Laboratory. 
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2.1. Physical multi-robot systems 

The last decade has witnessed a shift in research 
emphasis toward physical implementations of robotics 
in general and mobile robotics in particular. Most of 
the work in robotics so far has focused on control 
of a single agent, but a few efforts have begun to 
address multi-robot systems. Fukuda et al. [24] and 
subsequent works describe an approach to coordinat- 
ing multiple homogeneous and heterogeneous mobile 
robotic units, and demonstrate it on a docking task. 
Caloud et al. [8] and Noreils [47] remain faithful 
to the state-based framework, and apply a traditional 
planner-based control architecture to a box-moving 
task implemented with two robots in a master-slave 
configuration. Kube et al. [37] and Kube and Zhang 
[36] describe a series of simulations of robots per- 
forming a collection of simple behaviors that are be- 
ing incrementally transferred to physical robots. Bar- 
man et al. [4] report on a preliminary testbed for 
studying control of multiple robots in a soccer-playing 

0921-8890/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved 
SSDI 0921-8890(95) 00053-4 



322 M.J. Matarid/Robotics and Autonomous Systems 16 (1995) 321-331 

task. Parker [49,48] describes a behavior-based task- 
sharing architecture for controlling groups of hetero- 
geneous robots, and demonstrates it on a group of 
four physical robots performing toxic waste cleanup 
and box pushing. Donald et al. [ 18] reports on the 
theoretical grounding for implementing a cooperative 
manipulation task and demonstrate it on a pair of 
sofa-moving robots. Perhaps closest in philosophy as 
well as the choice of task to ours is work by AI- 
tenburg [ 1 ], describing a variant of the foraging task 
using a group of LEGO robots controlled in reac- 
tive, distributed style, and Beckers et al. [5], demon- 
strating a group of four robots with large numbers of 
simple agents. Representative work in swarm intelli- 
gence [25,13,20,30,51,38,6,14], deals with problems 
and approaches related to those treated by DAI (see 
below) but employs agents of comparatively low cog- 
nitive complexity. 

2.2. Artificial life 

The field of artificial life (Alife) focuses on 
bottom-up modeling of various complex systems, 
including simulations of colonies of ant-like agents 
[12,11,19,56]. Deneubourg et al. [16] and related 
work have experimented with real and simulated ant 
colonies and examined the role of simple control rules 
and limited communication in producing trail forma- 
tion and task sharing. Deneubourg et al. [ 17] define 
some key terms in swarm intelligence and discuss 
issues of relating local and global behavior of a dis- 
tributed system. Assad and Packard [2] and Hogeweg 
and Hesper [28] and related work also report on a 
variety of simulations of simple organisms producing 
complex behaviors emerging from simple interac- 
tions. Schmieder [52] reports on an experiment in 
which the amount of "knowledge" agents have about 
each other is increased and decreased based on local 
encounters. Werner and Dyer [58] and MacLennan 
[40] describe systems that evolve simple communi- 
cation strategies. On the more theoretical end, Keshet 
[34] describes a model of trail formation that fits 
biological data. 

Our own work is related to artificial life in that both 
are concerned with exploiting the dynamics of local 
interactions between agents and the world in order 
to create complex global behaviors. However, work 
in Alife does not typically deal with agents situated 

in physically realistic worlds. Additionally, it usually 
treats much larger populations sizes that the work pre- 
sented here. Finally, it most commonly employs ge- 
netic techniques for evolving the agents' compara- 
tively simple control systems. 

2.3. Distributed artificial intelligence 

Distributed Artificial Intelligence (DAI) also 
deals with multi-agent interactions (see [26] for an 
overview). DAI focuses on negotiation and coordina- 
tion of multi-agent environments in which agents can 
vary from knowledge-based systems to sorting algo- 
rithms, and approaches can vary from heuristic search 
to decision theory. In general, DAI treats cognitively 
complex agents compared to those considered by the 
research areas described so far. However, the types 
of environments it deals with are relatively simple 
and low complexity in that they feature no noise or 
uncertainty and can be accurately characterized. 

DAI can be divided into two subfields: Distributed 
Problem Solving (DPS) and Multi-Agent Systems 
(MAS) [50]. DPS deals with centrally designed sys- 
tems solving global problems and using built-in coop- 
eration strategies. In contrast, MAS work deals with 
heterogeneous, not necessarily centrally designed 
agents faced with the goal of utility-maximizing co- 
existence. 

Examples of DPS work include Decker and Lesser 
[ 15], addressing the task of fast coordination and re- 
organization of agents on a distributed sensor net- 
work, and Hogg and Williams [29] showing how 
parallel search performs better with distributed coop- 
erative agents than with independent agents. Exam- 
ples of MAS work include Ephrati [22], describing 
a master-slave scenario between two agents with es- 
sentially the same goals, and Miceli and Cesta [46], 
using estimates of usefulness of social interactions for 
agents to select whom to interact with. Along similar 
lines, Kraus [35] studies negotiations and contracts 
between selfish agents; Durfee et al. [21 ] discusses 
game-theoretic and AI approaches to deals among ra- 
tional agents. 

Certain aspects of DAI work are purely theoretical 
and address the difficulty of multi-agent planning and 
control in abstract environments (e.g. Shoham and 
Tennenholtz [53]) .  Some DAI work draws heavily 
from mathematical results in the field of parallel dis- 
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tributed systems (e.g. Huberman [32], Clearwater et 
al. [ 10], and many others). DAI and Alife merge in 
the experimental mathematics field that studies com- 
putational ecosystems, using simulations of popula- 
tions of agents with well defined interactions. The re- 
search is focused on global effects and the changes 
in the system as a whole over time. This process of 
global changes is usually referred to as "co-evolution" 
[33]. Co-evolution experiments are usually used to 
find improved search-based optimization techniques 
[ 27 ]. Often the systems studied have some similarities 
to the global effects found in biological ecosystems, 
but the complex details of biological systems are not 
modeled. 

and are not always representable with terminal states, 
but rather with dynamic equilibria to be maintained. 
Examples include avoiding obstacles and minimizing 
interference. Situated agents can have multiple con- 
current goals, including at least one attainment goal, 
and one or more maintenance goals. 

In the scope of our work, interaction is mutual in- 
fluence on behavior, and ensemble, collective or group 
behavior is an observer-defined temporal pattern of 
interactions between multiple agents. Of the innumer- 
ably many possible such behaviors for a given do- 
main, only a small subset is relevant and desirable for 
achieving the agents' goals. 

3.2. Communication and cooperation 

3. Key terms and definitions 

Previous section offered a glimpse at the highly var- 
ied directions and approaches to studying multi-robot 
and multi-agent systems. One of the main hurdles in 
the way of cross-fertilization between research direc- 
tions is inconsistent vocabulary. This section defines 
and overviews some of the key terms in order to make 
the described research accessible. 

3.1. Behaviors and goals 

In the last few years the notion of behavior as a 
fundamental building block has been popularized in 
the AI, control, and learning communities. From the 
perspective of the output of the system, we view be- 
havior as a regularity in the interaction dynamics be- 
tween the agent and the environment. This working 
definition is consistent with [55,54,7], and others. As 
a control structure, we define behavior to be a con- 
trol law for reaching and/or maintaining a particular 
goal. For example, in the robot domain, following is 
a control law that takes inputs from an agent's sen- 
sors and uses them to generate actions whictl will keep 
the agent moving within a fixed region behind another 
moving object. This definition specifies that a behav- 
ior is a type of an operator that guarantees a particular 
goal, whatever its type. The goals are typically deter- 
mined by the programmer. Attainment goals are termi- 
nal states; having reached a goal, the agent is finished. 
Such goals include reaching a home region and pick- 
ing up an object. Maintenance goals persist in time, 

Communication and cooperation have become pop- 
ular topics in both abstract and applied multi-agent 
work [60,20,1 ]. Communication is the most common 
means of interaction among intelligent agents. Since 
any observable behavior and its consequences can be 
interpreted as a form of communication, we propose 
a stricter classification. 

Direct communication is a purely communicative 
act, one with the sole purpose of transmitting infor- 
mation, such as a speech act, or a transmission of a 
radio message. The message need not be symbolic, as 
it commonly is not in nature. Directed communica- 
tion is direct communication aimed at a particular re- 
ceiver. Such communication can be one-to-one or one- 
to-many, in all cases to identified receivers. In contrast 
to direct communication, indirect communication is 
based on the observed behavior of other agents. This 
type of communication is referred to as stigmergic in 
biological literature, where it refers to communication 
based on modifications of the environment rather than 
direct message passing. 

Cooperation is a form of interaction, usually based 
on some form of communication. Certain types of co- 
operative behavior depend on directed communica- 
tion. Specifically, any cooperative behaviors that re- 
quire negotiation between agents depend on directed 
communication in order to assign particular tasks to 
the participants. Analogously to communication, ex- 
plicit cooperation is defined as a set of interactions 
which involve exchanging information or performing 
actions in order to benefit another agent. In contrast, 
implicit cooperation consists of actions that are a part 
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of the agent's own goal-achieving behavior repertoire, 
but have effects in the world that help other agents 
achieve their goals. 

3.3. Interference and conflict 

All approaches to multi-agent control must deal 
with interference, any influence that opposes or blocks 
an agents' goal-driven behavior. In societies consisting 
of agents with identical goals, interference manifests 
itself as competition for shared resources. In diverse 
societies, where agents' goals differ, more complex 
conflicts can arise, including goal clobbering, dead- 
locks, and oscillations. Two functionally distinct types 
of interference appear in multi-agent systems: interfer- 
ence caused by multiplicity, called resource competi- 
tion, and interference caused by goal-related conflict, 
called goal competition. 

Resource competition includes any interference re- 
sulting from multiple agents competing for common 
resources, such as space, information, or objects. As 
the size of the group grows, this type of interference 
increases, causing the decline in global performance, 
and presenting an impetus for the use of social rules. 

Resource competition manifests itself in homoge- 
neous and heterogeneous groups of coexisting agents. 
In contrast, goal competition arises between agents 
with different goals. Such agents may have compati- 
ble high-level goals (such as, for example, a family 
may have), but individuals may pursue different and 
potentially interfering subgoals, i.e. they can be "func- 
tionally heterogeneous" Such heterogeneity does not 
arise in SIMD-style groups of functionally identical 
agents in which all are executing exactly the same pro- 
gram at each point in time. 

Goal competition is studied primarily by the Dis- 
tributed AI community [26]. It usually involves pre- 
dicting other agents' goals and intentions, thus re- 
quiring agents to maintain models of each other (e.g. 
[ 31,46] ). However, such prediction abilities require 
computational resources that do not scale well with 
increased group sizes. One means of simplifying pre- 
diction is through the use of social rules which at- 
tempt to eliminate or at least minimize both resource 
and goal competition. In particular, their purpose is to 
direct behavior away from individual greediness and 
toward global efficiency. In certain groups and tasks, 
agents must give up individual optimality in favor of 

collective efficiency. In those cases, greedy individual- 
istic strategies perform poorly in collective situations 
because resource competition grows with the size of 
the group. 

Since social rules are designed for optimizing global 
resources, it is in the interest of each of the individuals 
to obey them. However, since the connection between 
individual and collective benefit is rarely direct, soci- 
eties can harbor deserters who disobey social rules in 
favor of individual benefit. Game theory offers elab- 
orate studies of the effects of deserters on individual 
optimality [ 3], but the domains it treats are typically 
much more cleanly constrained than environments in 
which robots are situated. In particular, game theory 
deals with rational agents capable of evaluating the 
utility of their actions and strategies. In contrast, our 
work is concerned with situated domains where the 
agents cannot be assumed to be rational due to incom- 
plete or nonexistent world models and models of other 
agents, inconsistent reinforcement, noise, and uncer- 
tainty. 

Optimality criteria for agents situated in physical 
worlds and maintaining long-term achievement and 
maintenance goals are difficult to characterize and 
even more difficult to achieve. While in game the- 
ory interference is a part of a competing agent's pre- 
dictable strategy, in the embodied multi-agent domain 
interference is largely a result of di7 ~'ct resource com- 
petition, which can be moderated v~ith relatively sim- 
ple social rules. 

4. Approaches to multi-agent control 

The problem of multi-agent control can be viewed 
at the individual agent level and at the collective level. 
The two levels are interdependent and the design of 
one is, or should be, strongly influenced by the other. 
However, multi-agent control grew out of individual 
agent control, and this history is often reflected in 
the control strategies at the collective level. Individual 
agent control strategies can be classified into reactive, 
behavior-based, planner-based, and hybrid approaches 
(see Matari6 [42,41 ] for detailed comparisons and 
discussion). 

Extending the planning paradigm from single-agent 
to multi-agent domains requires expanding the global 
state space to include the state of each of the agents. 
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Such a global state space is exponential in the num- 
ber of agents. Specifically, the size of the global state 
space G is IGI = s a, where s is the size of the state 
space of each agent, here assumed to be equal for all 
agents, or at worst the maximum for all agents, and a is 
the number of agents. Exponential growth of the ~tate 
space makes the problem of global on-line plar~ning 
intractable for all but the smallest group sizes, unless 
control is synchronized and has SIMD form, i.e. all 
agents perform the same behavior at the same time. 
Furthermore, since global planning requires commu- 
nication between the agents and the controller, the 
bandwidth can grow with the number of agents. Addi- 
tionally, the uncertainty in perceiving state grows with 
the increased complexity of the environment. Conse- 
quently, global planner-based control approaches do 
not appear well suited for problems involving multiple 
agents acting in real-time based on uncertain sensory 
information. 

Since hybrid systems typically employ a planner at 
the high level, in terms of multi-agent extensions they 
can be classified into the planner-based category. The 
collective behavior of a hybrid system would gener- 
ally be a result of a plan produced by a global con- 
troller and distributed over independent possibly par- 
tially autonomous modules. 

At the other end of the control spectrum, extending 
the reactive and behavior-based approaches to multi- 
agent domain results in completely distributed sys- 
tems with no centralized controller. The systems are 
identical at the local and global levels: at the global 
level the systems are a collection of reactive agents 
each executing task-related rules relying only on lo- 
cal sensing and communication. Since all control in 
such distributed systems is local, it scales well with 
the number of agents, does not require global com- 
munication, and is more robust to sensor and effector 
errors. However, global consequences of local inter- 
actions between agents are difficult to predict. Thus, 
centralized approaches have the advantage of potential 
theoretical analysis while parallel distributed systems 
typically do not lend themselves to traditional analyt- 
ical procedure. 

4.1. Analysis of behavior 

Multi-agent systems are typically complex, either 
because they are composed of a large number of el- 

ements, or because the inter-element interactions are 
not simple. Systems of several situated agents with 
uncertain sensors and effectors display both types of 
complexity. This section addresses how these proper- 
ties affect their behavior and its analysis. 

The exact behavior of an agent situated in a nonde- 
terministic world, subject to real error and noise, and 
using even the simplest of algorithms, is impossible to 
predict exactly. Similarly, the exact behavior of each 
part of a multi-agent system of such nature is also un- 
predictable since a group of interacting agents is a dy- 
namical system whose behavior is determined by the 
local interactions between individuals. In natural sys- 
tems, such interactions result in the evolution of com- 
plex and stable behaviors that are difficult to analyze 
using traditional, top-down approaches. We postulate 
that in order to reach that level of complexity syntheti- 
cally, such behaviors must be generated through a sim- 
ilar, interaction-driven, incrementally refined process. 

Precise analysis and prediction of the behavior of 
a single situated agent, specifically, a mobile robot in 
the physical world, is an unsolved problem in robotics 
and AI. Previous work has shown that synthesis and 
analysis of correct plans in the presence of uncertainty 
can be intractable even in highly constrained domains 
[39,9,23] and even on the simplest of systems [54]. 
Physical environments pose a great challenge as they 
usually do not contain the structure, determinism, and 
thus predictability usually required for formal analy- 
sis [7]. The increased difficulty in analyzing multi- 
agent systems comes from two properties intrinsic to 
complex systems: 
(1) the actions of an agent depend on the states/ac- 

tions of other agents; 
(2) the behavior of the system as a whole is de- 

termined by the interactions between the agents 
rather than by individual behavior. 

In general, no mathematical tools are available for 
predicting the behavior of a system with several, but 
not numerous, relatively complex interacting compo- 
nents, namely a collection of situated agents. In con- 
trast to physical particle systems, which consist of 
large numbers of simple elements, multi-agent sys- 
tems in nature and AI are defined by comparatively 
small groups of much more complex agents. Statis- 
tical methods used for analyzing particle systems do 
not directly apply as they require minimal interactions 
between the components [57,59]. 
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The difficulty in analyzing complex multi-agent 
systems lies in the level of system description. De- 
scriptions used for control are usually low level, 
detailed, and continuous. In contrast, planning and 
analysis are usually done at a high level, often using 
an abstract, discrete model. A more desirable and 
manageable level may lie in between the two. 

Instead of attempting to analyze arbitrary complex 
behaviors, our work focuses on providing a set of be- 
havior primitives that can be used for synthesizing 
and analyzing a particular type of complex multi-agent 
systems. The primitives provide a programming lan- 
guage for designing analyzable control programs and 
resulting group behaviors. We describe the approach 
next. 

5. The basic behavior approach 

Our work is based on the belief that intelligent col- 
lective behavior in a decentralized system results from 
local interactions based on simple rules. Basic behav- 
iors are proposed as a methodology for structuring 
those rules through a principled process of synthesis 
and evaluation. We postulate that, for each domain, a 
set of behaviors can be found that are basic because: 
(1) they are required for generating other behaviors, 
and (2) they constitute a minimal set the agent needs 
to reach its goal repertoire. The process of choosing 
the set of basic behaviors for a domain is dually con- 

Fig. 1. The mobile robots used to demonstrate and verify our group 
behavior and learning work. These robots demonstrated group 
avoidance, following, aggregation, dispersion, flocking, wandering, 
foraging, docking, and learning to forage. 

strained: from the bottom up by the agent and environ- 
ment dynamics, and from the top down by the reper- 
toire of the agent's goals. 

Mobile robots require an effective set of basic be- 
haviors in the spatial domain that enable them to em- 
ploy a variety of flexible strategies for interaction and 
object manipulation. The efficacy of such strategies 
relies on maximizing synergy between agents: achiev- 
ing the necessary goals while minimizing inter-agent 
interference. We propose the following empirically de- 
rived set of basic behaviors for mobile robots inter- 
acting and moving around objects in the plane: avoid- 
ance, following, aggregation, dispersion, homing, and 
wandering. According to our definition, the above 
behavior set is minimal and basic in that its mem- 
bers are not further reducible to each other, and they 
are sufficient for achieving our set of pre-specified 
goals. A number of other utility behaviors can be a 
part of an agent's repertoire, such as grasping and 
dropping, the only other behaviors we used in our 
work. 

The basic behavior set is evaluated by formally 
specifying each of the behaviors and comparing those 
to the specification of the set of goals (or tasks) given 
to the group. We have provided specifications and al- 
gorithms for each of the basic behaviors, implemented 
them on a collection of robots, and evaluated them 
based on the following criteria: repeatability, stabil- 
ity, robustness, and scalability. For details see Matari6 
[42]. The criteria were applied to the data obtained 
by running a large number of trials (at least 50) of 
each basic behavior on a collection of over 20 physi- 
cal mobile robots equipped with on-board power, sen- 
sors, and control (Fig. 1). Each of the robots is a 12- 
inch long steerable car base equipped with a suite of 
infra-red sensors for collision avoidance and puck de- 
tection, micro switches and bump sensors for contact 
detection, and radios and sonars for triangulating their 
position relative to two stationary beacons, and broad- 
casting word-sized messages within a limited radius. 
The basic behaviors, each consisting of one or a small 
set of simple rules, generated robust group behaviors 
that met the prespecified evaluation criteria. The top 
row of Fig. 2 shows a typical data set 2. 

2 The Real Time Viewer software used to gather, display, and 
plot the robot data was written by Matthew Marjanovi6. 
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Fig. 2. Real robot data for basic and composite behaviors. The robots are scaled down and plotted as black rectangles with arrows indicating 
their heading. The row at the bottom indicates the robots that were used in the particular experiment. Small boxes on the right indicate 
the elapsed time in seconds for each of the runs. The top row shows examples of real robot data for three basic behaviors: following, 
homing, and dispersing; the second row shows examples of  robot data for two different composite group behaviors: flocking and foraging. 
The foraging behavior of  7 robots is shown after 13.7 minutes of  running; collected pucks are in the box. 
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Basic behaviors are intended as building blocks for 
achieving higher-level goals and can be embedded in 
an architecture that allows two types of combination: 
direct (by summation) and temporal (by switching). 
Direct combinations execute multiple behaviors con- 
currently and combine their outputs. In contrast, tem- 
poral combinations execute only one behavior at a 
time, by switching between them. The architecture al- 
lows for multiple applications of the combination op- 
erators to basic behavior subsets. 

To demonstrate the operators, we implemented two 
higher-level behaviors, flocking and foraging. Exam- 
ple data from those is illustratc-d in the bottom row of 
Fig. 2. We generated simple and robust flocking be- 
havior by summing the outputs of avoidance, aggre- 
gation and wandering. When homing was added, the 
flock could direct itself toward a particular goal loca- 
tion. In all cases, the flocks had no fixed leaders, and 
were not vulnerable to failures of individual robots. 

A more complex example of a high-level behavior 
we demonstrated is foraging. It was implemented by 
applying a temporal combination operator to switch 
between avoidance, dispersion, following, homing, 
and wandering under appropriate sensory conditions. 
Those basic behaviors, along with the abilities to 
pick up and drop pucks, were sufficient to produce a 
robust and flexible collective foraging behavior that 
consisted of collecting all of the pucks in the area and 
depositing them in the home region while avoiding 
collisions and minimizing interference. 

In addition to empirically testing the behaviors and 
their combinations, we compared our methodology to 
a centralized, "total knowledge" approach applied to 
dispersion and aggregation tasks. The experimental re- 
suits showed that the simple, fully distributed strate- 
gies converged only a constant factor slower than the 
centralized approach. The details of the experiments 
can be found in [42]. 

6. Learning in complex group environments 

In addition to serving as building blocks for con- 
trol, basic behaviors are also an effective substrate for 
learning. We demonstrated a methodology for auto- 
matically generating higher-level behaviors by having 
the agents learn through their interactions with the 
world and with other agents, i.e. though unsupervised 

reinforcement learning ( RL ) . 
RL has been successfully applied to a variety of 

domains where the agent-environment interaction can 
be described as a Markov Decision Process (MDP). 
However, that assumption does not directly apply to 
the stochastic, noisy, and uncertain multi-agent envi- 
ronments. We implemented a reformulation of the tra- 
ditional RL model consisting of states, actions, and 
reinforcement in order to make it applicable to our 
domain. Instead of using actions, our system learns at 
the level of basic behaviors that hide low-level control 
details, and are more general and robust. 

The use of behaviors allows for clustering states into 
conditions, the necessary and sufficient subsets of state 
required for triggering the behavior set. Conditions are 
many fewer than states, so their use diminishes the 
agent's learning space and speeds up any RL algorithm 
[44]. 

We also introduced two ways of shaping the rein- 
forcement function to aid the agent in the nondeter- 
ministic, noisy, and dynamic environment. We used 
heterogeneous reward functions, which partition i he 
task into subgoals, thus providing more immediate re- 
inforcement. We also introduced progress estimators, 
functions associated with particular conditions, that 
provided some metric of the learner's performance 
during execution of a particular behavior. Progress es- 
timators decrease the learner's sensitivity to noise and 
minimize the likelihood of thrashing and receiving for- 
tuitous rewards. 

We validated the proposed RL formulation on the 
task of learning to forage. The behavior space included 
the foraging subset of basic behaviors described 
above, augmented with grasping, dropping, and rest- 
ing (an opportunity for the robots to recharge). The 
state space was effectively reduced to the power set 
of the following conditions: have-puck?, at-home?, 
night-time?, and near-intruder?. 

We implemented different versions of reinforce- 
ment learning algorithms in our domain and compared 
their performance over a large number of trials. The 
popular standard RL Q-learning was implemented and 
used as the control, and compared to an algorithm us- 
ing heterogeneous reward functions, and to one using 
those in addition to progress estimators. Our approach 
outperformed the alternatives, consistently converging 
to the correct policy within 15 minutes. The analysis 
of the data yielded a measure of learning difficulty 
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within the lifetime of a single foraging trial. For a de- 
tailed description of the learning algorithms and the 

data see [44].  

7. S u m m a r y  

This paper has reviewed the key terms, issues, and 

approaches in multi-robot and situated multi-agent 
control. We described the challenges of principled 
synthesis and analysis of collective behavior, and pro- 

posed a methodology for structuring the process of 

designing group behaviors for multi-robot systems. 
The basic behavior approach is general and biolog- 

ically rooted [42].  Therefore, we believe it is appli- 

cable to various domains of multi-agent interaction 
featuring complex dynamics, unpredictability, and un- 
certainty in sensing and action. The methodology is 
invariant to group size and interaction type. We have 

demonstrated it on over 20 agents situated in the spa- 
tial domain, applied it to smaller groups of more het- 
erogeneous agents [43,45], and are currently testing 
it on heterogeneous groups. We also plan to apply it 
to more abstract domains. 

This work is intended as a foundation in a contin- 
uing effort toward studying and synthesizing increas- 
ingly more complex behavior. The work on basic be- 

haviors distills a general approach to control, planning, 
and learning. The work also empirically demonstrates 

some challenging problems and offers some effective 
solutions for designing group behavior. 
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