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Abstract

We develop an efficient algorithm to track point features
supported by image patches undergoing affine deformations
and changes in illumination. The algorithm is based on a
combined model of geometry and photometry that is used to
track features as well as to detect outliers in a hypothesis
testing framework. The algorithm runs in real time on a
personal computer, and is available to the public.

1 Introduction

Tracking the deformation of image regions has proven
to be an essential component of vision-based systems in
a variety of applications ranging from control systems [7]
to human-computer interactions [3], medical imaging [1, 8]
and mosaicing, just to mention a few. In visual tracking the
main interest goes to establish region correspondences be-
tween images obtained from a moving camera. Once corre-
spondence has been established, the temporal evolution of
the deformation of each region can be used, for instance,
as a combined measurement of motion and structure of the
scene. To this end it is important for features to be tracked
reliably for as long as possible. The longer the baseline and
the smaller the error, the more accurate the reconstruction
[2]. A popular technique for visual tracking on unstruc-
tured scenes is to minimize the sum of squared differences
of images intensities, usually referred to as SSD matching.
Much work has been based on this principle, starting with
the pioneering work of Lucas and Kanade [6] that estab-
lishes matching between frames adjacent in time. As Shi
and Tomasi note [9], interframe matching is not adequate
for applications where the correspondence for a finite size
image patch over a long time span is needed. Indeed, inter-
frame tracking is prone to cumulative error when trajecto-
ries are integrated over time. On the other hand, when con-
sidering matching over long time spans, the geometric de-

formations of image regions become significant and more
complex models are necessary. Shi and Tomasi show that
the affine transformation is a good tradeoff among model
complexity, speed and robustness.

However, SSD or correlation-based tracking algorithms
usually assume that the changes in the scene appearance are
only due to geometric deformations. Thus, when changes in
illumination are relevant, these approaches tend to perform
poorly. Hager and Belhumeur in [4] describe an SSD-based
tracker that compensates for illumination changes. Their
approach is divided into three phases: first a target region is
defined, then a basis of reference templates for the illumi-
nation change is acquired and stored, and finally tracking is
performed based on the prior knowledge of the templates.

In order to decide whether tracking of a feature is fea-
sible or not, it is necessary to monitor its quality along the
sequence. Shi and Tomasi [9] proposed a rule based on the
image residual, which they called “dissimilarity”, that dis-
cards features when the estimation of the displacement pa-
rameters cannot be performed reliably. Along this direction
Tommasini et al. [10] proposed a robust method to detect
and reject outliers. They use the X84 rule borrowed from
robust statistics, which achieves robustness employing me-
dian and median deviation instead of the usual mean and
standard deviation.

As computers are becoming more and more powerful, a
growing range of applications can be implemented in real-
time with all the benefits that follow. For instance, structure
from motion algorithms have been implemented as fast as
30 frames per second [5]. Such systems use feature tracking
as measurements and hence speed is of paramount impor-
tance. Furthermore, visual trackers that do not rely on prior
knowledge on the structure or motion of the scene and are
insensitive to environmental changes, for instance illumina-
tion, open to a wide variety of applications.

In this paper we propose a system that performs real-time
visual tracking in the presence of illumination changes. No
off-line computations or prior assumptions are made either



on structure or illumination of the scene. Finally, we pro-
vide a principled method to reject outliers that do not fit, for
instance at occluding boundaries.

2 Image deformation models

2.1 Geometry

LetX be the coordinate of a pointP on a surfaceS in the
scene. Letx = π(X) be the projection ofP on the image
plane, whereπ, depending on the imaging process, can be
a perspective projection:π(X) = [X1

X3

X2
X3

]T , or a spherical

projection: π(X) = X
‖X‖ . We will not make distinctions

between the homogeneous coordinatesx = [x y 1]T and
the 2-D coordinates[x y]T . I(x, t) denotes the intensity
value at the locationx of an image acquired at timet. Away
from discontinuities inS, generated for example by occlud-
ing boundaries, the deformations of the images ofS can be
described as image motion:

I(x, 0) = I(g(x), t) ∀ x ∈ W (1)

whereW is the region of interest in the image, andg(·) is, in
general, a nonlinear time-varying function which depends
on an infinite number of parameters (the surfaceS):

g(x) = π(R(t)xρ + T (t)) with ρ | xρ = X ∈ S (2)

where(R(t), T (t)) ∈ SE(3) is a rigid change of coordi-
nates between the inertial reference frame, that we choose
to coincide with the camera reference system at time0, and
the moving reference frame (at timet).

Clearly, having real-time operation in mind, we need
to restrict the class of deformations to a finite-dimensional
one that can be easily computed. The most popular feature
tracking algorithms rely on a purely translational model:

g(x) = x + d ∀ x ∈ WT (3)

whereWT is a window of a certain size, andd is the 2-D
displacement ofx on the image plane. This model results
in very fast algorithms [6], although for it to be valid one
has to restrict the size of the window, thereby losing the
beneficial effects of averaging. Typical sizes for windows
range from3 × 3 to 7 × 7, depending on the complexity
of the scene, the sample rate of the frame grabber and the
resolution of the frame grabber, beyond which the model
is easily violated after a few frames. Therefore, a purely
translational model is only valid locally in space and time.
A richer model can be obtained by considering Euclidean
transformations of the plane, i.e.g(x) = Ux + d where
U ∈ SO(2) describes a rotation on the plane. A slightly
richer model where the linear term is not restricted to be a
rotation, is an affine transformation:

g(x) = Ax + d ∀ x ∈ WA (4)

whereA ∈ GL(2) is a general linear transformation of the
plane coordinatesx, d is the 2-D displacement, andWA is
the window of interest. This affine model has been proposed
and tested by Shi and Tomasi [9].

Because of image noise, the equation (1) in general does
not hold exactly. If the motion functiong(·) can be approx-
imated by a finite set of parametersα, then the problem can
be posed as to determinêα such that:

α̂ = arg min
α

∫

W
‖I(x, 0)− I(gα(x), t)‖dx. (5)

for some choice of norm‖ ·‖, whereα = {d}, {A, d} in the
translational and affine model respectively. Notice that the
residual to be minimized is computed in the measurements
(i.e. image intensity).

2.2 Photometry

In real environments brightness or contrast changes are
unavoidable phenomena that cannot always be controlled. It
follows that modeling light changes is necessary for visual
trackers to operate in a general situation.

Consider a light sourceL in the 3-D space and suppose
we are observing a smooth surfaceS. As Figure 1 explains,
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Figure 1. Image formation process when illumina-
tion is taken into account: the intensity value atp on
the image plane depends in general on the lightL dis-
tribution, the observer position, the surface normalN
atP and the albedo functionE of S.

the intensity value of each point on the image plane depends
on the portion of incoming light from the sourceL that is
reflected by the surfaceS, and is described by theBidirec-
tional Reflectance Distribution Function(BRDF). When the
light sourceL is far enough from the surfaceS, the incident
light rays are approximately parallel. In a similar manner,
if the observer is far enough from the surfaceS, the view-
ing angle for each point on the surface can be approximated



with a constant. Finally, we assume that for a pointP on the
smooth surfaceS, it is possible to consider a neighborhood
U aroundP such that normal vectors toS do not change
within U , i.e. inU the surface is a plane.

Under the above assumptions, and assuming that the sur-
face is Lambertian, the BRDF simplifies considerably and
the intensity observed at the pointx can be modeled as:

I(x) = λEE(X) ∀ x ∈ WU (6)

whereE is the albedo function ofS, WU = π(U) andλE

is constant and depends on the angle between the incident
light direction and the surface normal. On the other hand,
due to the camera automatic gain (acting on the brightness
parameter) or to reflections coming from neighboring ob-
jects, it is necessary to introduce an additive term in the
equation (6) to take into account for these effects. There-
fore, a more appropriate model turns out to be:

I(x) = λEE(X) + δE ∀ x ∈ WU (7)

whereδE is constant for anyx ∈ WU . λE andδE can be
thought as parameters that represent respectively the con-
trast and brightness changes of the image. When either the
camera or the scene is subject to motion, these parameters
will change and so willλE andδE . We define the following
as our model for illumination changes:

I(x, 0) = λ(t)I(g(x), t) + δ(t) ∀ x ∈ WU (8)

whereλ(t) andδ(t) are defined as:

λ(t) = λE(t)
λE(0)

δ(t) = δE(t)− λE(t)
λE(0)δE(0) t > 1.

2.3 Computing geometric and photometric pa-
rameters

The combination of the geometry and photometry gives
the following:

I(x, 0) = λ(t)I(A(t)x + d(t), t) + δ(t) ∀ x ∈ WU .
(9)

Because of image noise and because both the affine motion
model and the affine illumination model are approxima-
tions, equation (9) in general does not hold exactly. There-
fore, we pose the problem as an optimization problem: find
the parametersA, d, λ andδ that minimize the following
discrepancy:

ε =
∫

WU

[I(x, 0)− (λI(Ax + d, t) + δ)]2w(x)dx (10)

wherew(·) is a weight function. Note that to simplify the
notations, we have dropped the time indext for the param-
eters. In the simplest case,w(x) ≡ 1. However, in gen-
eral, the shape ofw(·) depends on the application. For in-
stance, it can be a bell-like function to emphasize the win-
dow center. To carry out the minimization, we approximate

the modeled intensity using a first-order Taylor expansion
around:

A = Id d = 0 λ = 1 δ = 0. (11)

We have:

λI(Ax + d, t) + δ ' λI(x, t) + δ +∇I
∂y
∂u

(u− u0) (12)

where∇I is the gradient of the image intensity computed
at x, y = Ax + d. u collects the geometric parametersA
andd: u = [a11 a12 a21 a22 d1 d2] andu0 = [1 0 0 1 0 0],
whereA = {aij}, d = [d1 d2]T . ∂y

∂u is the derivative ofy
with respect tou. Rewriting equation (12) in matrix form,
we have:

I(x, 0) = FT (x, t)z (13)

where F (x, t) = [xIx yIx xIy yIy Ix Iy I 1]T , z =
[a11 a12 a21 a22 d1 d2 λ δ]T andx andy are the coordi-
nates ofx.

The problem reduces to determiningz for each patch.
Multiplying equation (13) byFT (x, t) on both sides, and
integrating over the whole windowWU with the weight
functionw(·), we have the following linear8× 8 system:

Sz = a (14)

where

a =
∫

WU

FT (x, t)I(x, 0)w(x)dx (15)

and

S =
∫

WU

FT (x, t)F (x, t)w(x)dx. (16)

If we consider the pixel quantization, the integral becomes
a summation. We writeS in a block-matrix form:

S =
∑

x∈WU

[
T U
V W

]
w(x) (17)

where

T =




x2I2
x xyI2

x x2IxIy xyIxIy xI2
x xIxIy

xyI2
x y2I2

x xyIxIy y2IxIy yI2
x yIxIy

x2IxIy xyIxIy x2I2
y xyI2

y xIxIy xI2
y

xyIxIy y2IxIy xyI2
y y2I2

y yIxIy yI2
y

xI2
x yI2

x xIxIy yIxIy I2
x IxIy

xIxIy yIyIx xI2
y yI2

y IxIy I2
y




(18)

V T = U =




xIxI xIx

yIxI yIx

xIyI xIy

yIyI yIy

IxI Ix

IyI Iy




(19)

and

W =
[

I2 I
I 1

]
. (20)



T is the matrix computed in the algorithm of Shi and
Tomasi, which is based on geometry only.W comes from
our model of photometry.U andV are the cross terms be-
tween geometry and photometry. Finally, whenS is invert-
ible, z can be computed as:

z = S−1a. (21)

From equation (21), one can compute all the parameters.
However, it will only give a rough approximation forz be-
cause of the first-order approximation in equation (12). To
achieve a higher accuracy one can, for example, employ a
Newton-Raphson-style iteration. This can be done by ap-
proximating equation (9) around the previous solution, and
iterating equation (21) until the variation in all the param-
eters is negligible. Note that, a simple implementation of
Newton-Raphson minimization algorithm would have in-
volved the Hessian matrix of the cost function, which re-
quires second derivatives of image intensities. In our mini-
mization procedure, one does not need to compute the Hes-
sian matrix. It has been noticed experimentally that this
modification improves speed and robustness of the mini-
mization algorithm.

3 Hypothesis test-based outlier rejection

To decide whether features are being tracked success-
fully or not, we could examine the value of the discrepancy
(10) between the intensities of the image patch at timet0
and the reconstruction at timet0 from the image patch at
time t. However, such discrepancy function does not com-
pensate for differences in the intensity variation among the
patches of interest. A patch with high variation gives high
residual because of pixel quantization and interpolation dur-
ing the matching. A suitable discrepancy function turns out
to be the normalized cross-correlation. Hence, our rejection
rule discards features whose normalized cross-correlation
falls below a fixed threshold. Tipical values range from0.80
to 0.95.

Another practical issue to consider is the evaluation of
the information content of an image patch. When a patch
shrinks significantly along one or both directions, the infor-
mation it carries might become meaningless to the purposes
of the minimization. Based on this reasoning, we introduce
another monitoring scheme: letWI(t0) andWI(t) be the
window for a patchI at timet0 andt respectively; compute
the ratio between the area orWI(t) and the area ofWI(t0).
We discard the patchI if the computed ratio falls below
a threshold with value between0 (the feature is no longer
visible) and1 (the areas are identical).

4 Experiments

Figure 2 shows8 images from a sequence of about400
frames. The scene consists of a box rotating along the ver-
tical axis. The box first rotates from left to right, then it
comes back to the initial position. As it can be seen, during
the rotation the illumination changes substantially.

Figure 4 shows the residuals of our algorithm versus Shi-
Tomasi. Figure 3 shows the evolution of a selected patch.
The top eight images are the views at different time in-
stants. The sequence in the middle is the reconstruction
of the patch at timet0 using the geometric parameters es-
timated by Shi-Tomasi’s algorithm. The bottom eight im-
ages are the reconstructed patches based on our estimation.
Note that not only the appearance is estimated correctly, but
also the change in illumination is compensated for. Fig-
ure 5 shows the estimatedλ (image contrast) andδ (image
brightness). Both estimates come back to the initial state, as
expected. In this test, the Shi-Tomasi tracker cannot track
this patch after approximately200 frames.

A second set of experiments is devoted to show our out-
lier rejection rule based on the residual. Figure 6 shows the
setting for this experiment, where, among the others, it has
been chosen a patch (number 4) that will be occluded dur-
ing the motion. Figure 7 shows the evolution of the resid-
uals for5 selected patches using both Shi-Tomasi and our
algorithm. As one can see, residuals can increase for differ-
ent reasons. In particular feature 3 is correctly tracked by
Shi-Tomasi tracker until frame200, but its residual is com-
parable to feature 4 that is an outlier. Therefore, the usual
outlier rejection rule would discard also those features that
are instead valid ones.

We implement our algorithm on a personal com-
puter. The code and detailed documentation are
available athttp://www.ee.wustl.edu/˜hljin/
research . In our test (on a 1GHz PIII computer), the
program can track40 patches of size7× 7 pixels in15 mil-
liseconds.

5 Conclusions

We have presented an extension of the algorithm of Shi-
Tomasi to take into consideration changes in illumination
and reflection. The estimation of parameters is done using
an iterative optimization scheme. The computational cost is
low and the algorithm has been implemented in real-time.
We have made our real-time implementation (both code and
documentation) available to the public. We tested our algo-
rithm on real images and the experimental results show that
our model is accurate enough to keep tracking under signif-
icant changes in illumination; furthermore, we showed that
in real environments taking into account for light changes



Figure 2. Eight images from thesesamesequence. The superimposed squares show the regions of interest.

(a)

(b)

(c)

Figure 3. Some snapshots of the region of interest from thesesamesequence: (a) original sequence as it evolves in
time; (b) reconstruction of the initial patch using Shi-Tomasi algorithm; (c) reconstruction of the initial patch using the
illumination-invariant tracker. As it can be seen the illumination change leads Shi-Tomasi to not converge properly.
Our method maintains the appearance of the patch constant throughout the sequence.

is necessary in order to track longer. Moreover, the com-
puted residual is invariant to changes in illumination, which
allows to monitor point features and to reject outliers cor-
rectly.
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Figure 5. Left : Evolution of λ (image contrast).
The image contrast increases until frame197 and then
goes back to1 at frame392, where the box returned
to the original position.Right: Evolution of δ (im-
age brightness). The image brightness decreases until
frame197 and then increases going back to0 where
the patch returned to the original position.
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Figure 6. One snapshot from the “two boxes” se-
quence. In this sequence some features have been
chosen using the selection algorithm of Shi-Tomasi.
Feature 4 is chosen to show the behavior of the resid-
ual when there is partial occlusion. Feature 3 is an
example of point feature that has high residual (when
light changes are not accounted for) comparable to
occluded features residual (see feature 4).
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Figure 7. Evolution of SSD residual for thetwo
boxessequence. The residuals of features 3 and 4
are comparable. Thus, usual monitoring for occluded
features becomes inadequate when the environmental
light changes. The other features have residuals that
are comparable in both Shi-Tomasi and illumination-
invariant trackers. The other features do not suffer
from strong light changes. Feature 3 is subject to the
reflections from the checker board, while feature 4 be-
comes partially occluded.


