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Evolution of Neural Controllersfor Robot Navigation in Human Environments
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Abstract: Problem statement: In this study, we presented a novel vision-basathiag approach for
autonomous robot navigatioApproach: In our method, we converted the captured imagelmary
one, which after the partition is used as the imgfuhe neural controlleRResults: The neural control
system, which maps the visual information to matommands, is evolved online using real robots.
Conclusion/Recommendations. We showed that evolved neural networks performed i indoor
human environments. Furthermore, we compared théorpgance of neural controllers with an
algorithmic vision based control method.
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INTRODUCTION multiple frames. Domains include road and off-road
travel (Hebertet al., 1995; Rosenblatt and Thorpe,
The general problem of designing a machine forl995; Turk et al., 1988; Crisman, 1992; Zeng and
real time navigation and obstacle avoidance in arCrisman, 1995; Dickmannst al., 1990) and indoor
arbitrary environment is ongoing. This problemfien  robotic navigation (Horswill, 1993; Coombs and
described as a problem in artificial intelligenfezzy  Roberts, 1992; Santos-Victor and Sandini, 1996;
logic, sensor fusion, intelligent control, ad infim.  Santos-Victoet al., 1995).
When dealing with numerous, noisy, conflicting, Neural Networks (NNs) had also been used by
incomplete and uncertain information from multiple some other researchers for solving the said prabllem
streams, designing robotic computer systems anthis connection, researches (Yang and Meng, 2000;
algorithms for autonomous navigation and obstacleMondada and Floreano, 1995; Capi, 2007; Yamada,
avoidance is non-trivial. 2005; Pal and Kar, 1996; Gu and Hu, 2002) are
Robot navigation in human environments has beeimportant to mention. However, the performance rof a
previously investigated from a number of different NN depends on its architecture and connecting gimap
approaches. In most of these methods, the robititeut weights, optimal selection of which is a tedioub.jé&
the distance, ultrasonic, or laser sensors to at&ign  variety of tools based on supervised and reinfoszgm
the environment. However, the main drawback of thdearning algorithms had been used by a few
sonar or laser sensors lies in the fact that onessds  investigators for this purpose. Back-propagation
required for one distance measurement, that isyder  algorithm is the most popular method to optimize th
to obtain a complete picture of the environmenuatb NN, but it may have the local minimum problem.
the robot, a number of sensors must be used. Mereov Simulated Annealing (SA) (Goffet al., 1994), Genetic
to achieve the accuracy in detection, they willdhdw  Programming (GP) (Koza, 1992), Genetic Algorithms
be placed perpendicular to the target. (GA) (Goldberg, 1989) have also been used by some
Recently, vision based robot navigation hasresearchers for the said purpose. It is to be ntitatl
attracted many researchers. Variations have indludeGAs along with NN has added a new dimension to the
using sensory input from stereo vision, monocularfield of robotic research, namely evolutionary rot®
vision and the combination of vision with other sers.  (Pratihar, 2003). Here, a suitable NN architectige
Methods also vary in how they deal with temporal inevolved by using a GA through proper interactiolith w
formation, from using individual frames exclusively the environment. In (Hui and Pratihar, 2004) the
(Horswill, 1993) to computing optical flow fieldsodfm  researchers have provided a comprehensive review on
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various aspects of evolutionary robotics. Afteriziag

Due to the desired tasks and the environment in

the advantages of GA-NN approach, Hui and Pratihawhich the robot has been designed to operate,rnvisio

(2004) studied
navigation problems of a car-like
computer simulations.

its performance for solving the
robot through

was chosen as the primary sensor for navigatiors It
also expected that in the environments with sugfici
features and color information TateRob can make

Unlike previous works, in the experiments reportedaccurate vision-based odometry estimation. Theegfor

here, we consider evolution of neural controllers f
robot navigation in unstructured environments. Ur o
method, we convert the captured image in a binagy o
which after the partition is used as the input loé t
neural controller.

Most of the above researchers tested their motio

planning algorithms through computer simulations.

However, more recently, the importance of condggtin
experiments using the real robot to test the peréoce
of motion planner has been felt by various invegtgs
(Thrun, 1996; Kimet al., 2004; Bruce and Veloso,
2002; Akbarzadelet al., 2000). In the soft computing-
based navigation schemes, training is given tdioé-
and the performance of optimal motion planner sscté
on a real robot. However, simulation of visual sgss
is really difficult. Due to the lighting conditionghe
evolved neural controllers in simulation often heve

the vision system consists of a stereo camera. By
changing the lens, the peripheral and foeval visian
be realized.

In order to operate in environments with
insufficient lighting conditions, the TateRob is
equipped with Laser range sensor. The SICK LMS 200
used in our experiments has a field-of-view of 1864
returns 181 distance readings (one per degree). The
maximum error is +/-3 cm per 80 m.

The robot is actuated by two 24 V batteries. Ohe o
the batteries actuates the motors and the othethene
main CPU and the sensors. A PC/104 stack runniag th
Linux operating system provides the software iatesf
to record and process all the sensor informatioreat
time. The robot can communicate with the operator b
wireless LAN in a maximum distance of 100 m.

The robot can operate in the following different

poor performance when they are transferred in reainodes:

robot. In order to overcome this, we evolved tharak
controllers online using real robots. We utilizete t
Tate Rob, a robotic platform developed in our
laboratory.

MATERIALSAND METHODS

TateRob platform: In the experiments presented in

this study, we use the TateRob Fig. 1. The key

performance specifications of TateRob are:

Total mass 20.5 kg
Length 0.%0.5x0.4 m
Maximum speed 3 m séc

Fig. 1: TateRob platform

The robot can move in the environment controlled

by a joystick:

Directly connected with the robot

Connected with operator PC and remotely

controlling the robot

The operator can control the robot remotely by

sending commands like move forward, rotate right

or left

The robot can operate autonomously by processing
the sensors data in the onboard computer

Neural controller: In order to calculate the sensory
input of the neural controller, the captured catoage

is converted to a binary image, as shown in Figrta
input of the visual processing module is the image
frame captured from the robot’s camera. The image f

is converted to a grey scale and then to a bimaage
Fig. 3. In our implementation the size of captured
image is 240x320 pixels.

We implemented a feed-forward neural controller
Fig. 4 with 20, 4 and 2 units in the input, hiddamd
output layers, respectively. A set of visual nesron
arranged on a 2x10 grid, receive information atibat
grey level of the corresponding pixels in the image
provided by the camera of the robot. Each input uni
covers an area of 50x32 pixels in the image. Irerotd
increase the image processing speed, only théobdtfm
of the captured image is processed (100x32€lg)i
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Fig. 2: Image processing algorithm

Fig. 5: GA cycle
where the incoming activation for nodesi
‘ — X = 20wy, 2
) and j ranges over nodes with weights into node i.
Captured image Gray scale image The output units directly control the right andt le

wheel angular velocities where 0 corresponds to no

. ' motion and 1 corresponds to full-speed forward
' - rotation. The left and right wheel angular velasti
i : - Wight andWef, are calculated as:

O‘)righl = wmax*y right (3)

T S . meft= max*yleft
Image partition Binary image
. . . Where:
Fig. 3: Sample of image processing . .
Whnax The maximum angular velocity

[ Yrignt and Yerr = The neuron outputs
The maximum forward velocity is considered to be

0.5 m sec.

Evolutionary algorithm: GA is a search algorithm
based on the mechanics of natural selection and
population genetics. The search mechanism is based
the interaction between individuals and the natural
environment. GA comprises a set of individuals (the
population) and a set of biologically inspired aders
(the genetic operators). The individuals have genes
which are the potential solutions for the problérhe
genetic operators are crossover and mutation. GA

o ) ) ) generates a sequence of populations by using geneti
The activation of input units, scaled between 0 B3n8  gperators among individuals. Only the most suited

given by the average grey level of all pixels wittihe  ingividuals in a population can survive and gererat
partition. The hidden and output units use sigmoidyffspring, thus transmitting their biological heitgdto
activation function: the new generation.

GA operates through a simple cycle of four stages,
= as shown in Fig. 5. Each cycle produces a new
(1) . ; ; .
1+ generation of possible solutions for a given problét
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the first stage, an initial population of potential proportional with the average gray level of botttaft
solutions is created as a starting point for tteecde In  half of visual field and vice-versa Fig. 6.

the next stage, the performance (fitness) of each Figure 7a and b show the performance of the
individual is evaluated with respect to the constea  algorithmic method for two different maximum
imposed by the problem. Based on each individual's)elocities, 0.5 and 0.3 m Ség respectively. At the
fitness, a selection mechanism chooses “parentshé®  peginning, the robot avoids collision with an obta
crossover and mutation operators. and moves fast in the environment Fig. 7a. Then,

The crossover operator takes two chromosomegpgiacies become visible in the right half of thisusl
and swaps part of their genetic information to pi® g1y However, due to the restriction in the battpart

new chromosomes. The mutation operator |ntroduce8f the visual field, the obstacle in the front bétrobot

(middle upper part of the image) is not considered.
lqorithm t f local minima’s t lﬁ'herefore, the small number of black pixels in the
algonthm fo escape from focal minima s traps. bottom right corner does not have a great effect on

The offspring’s produced by the genetic . .
manipulation process are the next populations to bgeducmg the angular speed of the left wheel, mgkin

: : impossible for the robot to avoid hitting the olotta
evaluated. GA can replace either a whole population When the robot was controlled using  the
its less fitted members only. The creation-evatrati 9

: . ) . . algorithmic method, but the maximum velocity is
selection-manipulation cycle repeats until a satitsfry duced to 0.3 & th bot ble t iqat
solution to the problem is found or some other cQUCEA 0 ©.5M S € robot was able 1o navigate

termination criteria are met. through the obgtacles, as shown in Fig. 7b. Duﬂn&p

For any evolutionary computation technique, aIow speed mptmn, the right gnd Igft angular velesi
chromosome representation is needed to descriie ea@'® Updated in a shorter moving distance. Therefoee
individual in the population. In our implementatjdghe ~ robot trajectory is different compared with the \poeis
genome of every individual of the population encode experiment Fig. 8.
the weight connections of the neural controllenasal Figure 7c shows the performance of robot
number. The genome length is 88 and the connectiocontrolled by the best evolved neural controlleheT
weights range from -5 to 5. Each individual of the maximum velocity is 0.5 m s&c The robot avoids
population controls the TateRob during a lifetineé  obstacles and outperformed the algorithmic methpd b
50 sec (50 m sed000 time steps). At the end, the moving smoothly among obstacles.
fithess function is calculated. The fitness funatio
selects robots for their ability to move among
obstacles as long as possible for the durationhef t
life of the individual. Therefore, the fitness iket
distance traveled by the robot. Every-time that the
robot hits an obstacle (detected by the laser sgnso
the robot moves backward and the remained lifetime
is reduced by 100 steps.

In the first generation 60 neural controllers with
randomly selected weight connections are generéted.
the second generation the population size is rettwe
20, by selecting the best individuals of the first N N Y,

generation based on the fithess value. The evalutio
terminated after 9 generations. ></

RESULTSAND DISCUSSI ON [ Left wheel velocity ] [ Right wheel velocity ]

modifying some of the genes, helping the searc

In order to evaluate the performance of evolved
neural controllers, we developed an algorithmic
navigation method where the right and left wheel
angular velocities are calculated based on theageer
grey level of pixels in the left and right visualfl. The
angular velocity of right wheel is considered irser Fig. 6: Algorithmic method for robot navigation
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Fig. 7: Video capture of robot motion. (a) Algoritic method with max. speed 0.5 m Sedb) Algorithmic
method with max. speed 0.3 m se¢c) Neural Controller with max. speed 0.5 mSec
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Fig. 8: TateRob trajectory. (a) Algorithmic methaith max. speed 0.5 m ség(b) Algorithmic method with max.
speed 0.3 m s&t (c) Neural Controller with max. speed 0.5 m$ec
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Fig. 10: Performance of neural controllers in dif& environment

The Hinton diagram of the weight connectionsenvironments, the evolved neural controllers faited
Fig. 9 shows that input neurons positioned in thieter  perform well. For example, in some specific ligltin
of the visual field have positive connections witle  conditions, the TateRob hit the obstacles during th
hidden neurons. In addition, most of hidden neuronsavigation.
also have positive connections with output neutbas

control the right and left wheel angular velocities CONCLUSION
Therefore, the robot moves fast in the forward aion
when there is no obstacle in the front. When anamibes This study presented an evolutionary based method

enters in the visual field in the left or right sjdthe for robot navigation in human environments. Neural
respective wheel’ angular velocity is reduced duthe  controllers were evolved online using the TateRod a
negative connection weights and the robot avoidshe validity of the proposed method has been proved
hitting the obstacles. experimentally. The results show that the evolved

The performance of the evolved neural controllersneural network outperforms an algorithmic method fo
was also tested in environments different from ¢hims  robot navigation. In the future, it will be intetiegy to
which they had been evolved Fig. 10. Figure 10 showinvestigate how the size of the visual field an@ th
that evolved neural controllers generalize welhaw  number of partitions influence the neural controlle
environments. However, in certain  specific performance.
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