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Abstract: Problem statement: In this study, we presented a novel vision-based learning approach for 
autonomous robot navigation. Approach: In our method, we converted the captured image in a binary 
one, which after the partition is used as the input of the neural controller. Results: The neural control 
system, which maps the visual information to motor commands, is evolved online using real robots. 
Conclusion/Recommendations: We showed that evolved neural networks performed well in indoor 
human environments. Furthermore, we compared the performance of neural controllers with an 
algorithmic vision based control method. 
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INTRODUCTION 

 
 The general problem of designing a machine for 
real time navigation and obstacle avoidance in an 
arbitrary environment is ongoing. This problem is often 
described as a problem in artificial intelligence, fuzzy 
logic, sensor fusion, intelligent control, ad infinitum. 
When dealing with numerous, noisy, conflicting, 
incomplete and uncertain information from multiple 
streams, designing robotic computer systems and 
algorithms for autonomous navigation and obstacle 
avoidance is non-trivial. 
 Robot navigation in human environments has been 
previously investigated from a number of different 
approaches. In most of these methods, the robots utilize 
the distance, ultrasonic, or laser sensors to navigate in 
the environment. However, the main drawback of the 
sonar or laser sensors lies in the fact that one sensor is 
required for one distance measurement, that is, in order 
to obtain a complete picture of the environment around 
the robot, a number of sensors must be used. Moreover, 
to achieve the accuracy in detection, they will have to 
be placed perpendicular to the target. 
 Recently, vision based robot navigation has 
attracted many researchers. Variations have included 
using sensory input from stereo vision, monocular 
vision and the combination of vision with other sensors. 
Methods also vary in how they deal with temporal in 
formation, from using individual frames exclusively 
(Horswill, 1993) to computing optical flow fields from 

multiple frames. Domains include road and off-road 
travel (Hebert et al., 1995; Rosenblatt and Thorpe, 
1995; Turk et al., 1988; Crisman, 1992; Zeng and 
Crisman, 1995; Dickmanns et al., 1990) and indoor 
robotic navigation (Horswill, 1993; Coombs and 
Roberts, 1992; Santos-Victor and Sandini, 1996; 
Santos-Victor et al., 1995). 
 Neural Networks (NNs) had also been used by 
some other researchers for solving the said problem. In 
this connection, researches (Yang and Meng, 2000; 
Mondada and Floreano, 1995; Capi, 2007; Yamada, 
2005; Pal and Kar, 1996; Gu and Hu, 2002) are 
important to mention. However, the performance of an 
NN depends on its architecture and connecting synaptic 
weights, optimal selection of which is a tedious job. A 
variety of tools based on supervised and reinforcement 
learning algorithms had been used by a few 
investigators for this purpose. Back-propagation 
algorithm is the most popular method to optimize the 
NN, but it may have the local minimum problem. 
Simulated Annealing (SA) (Goffe et al., 1994), Genetic 
Programming (GP) (Koza, 1992), Genetic Algorithms 
(GA) (Goldberg, 1989) have also been used by some 
researchers for the said purpose. It is to be noted that 
GAs along with NN has added a new dimension to the 
field of robotic research, namely evolutionary robotics 
(Pratihar, 2003). Here, a suitable NN architecture is 
evolved by using a GA through proper interactions with 
the environment. In (Hui and Pratihar, 2004) the 
researchers have provided a comprehensive review on 
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various aspects of evolutionary robotics. After realizing 
the advantages of GA-NN approach, Hui and Pratihar 
(2004) studied its performance for solving the 
navigation problems of a car-like robot through 
computer simulations. 
 Unlike previous works, in the experiments reported 
here, we consider evolution of neural controllers for 
robot navigation in unstructured environments. In our 
method, we convert the captured image in a binary one, 
which after the partition is used as the input of the 
neural controller.  
 Most of the above researchers tested their motion 
planning algorithms through computer simulations. 
However, more recently, the importance of conducting 
experiments using the real robot to test the performance 
of motion planner has been felt by various investigators 
(Thrun, 1996; Kim et al., 2004; Bruce and Veloso, 
2002; Akbarzadeh et al., 2000). In the soft computing-
based navigation schemes, training is given to off-line 
and the performance of optimal motion planner is tested 
on a real robot. However, simulation of visual sensors 
is really difficult. Due to the lighting conditions, the 
evolved neural controllers in simulation often have a 
poor performance when they are transferred in real 
robot. In order to overcome this, we evolved the neural 
controllers online using real robots. We utilized the 
Tate Rob, a robotic platform developed in our 
laboratory.  
 

MATERIALS AND METHODS 
 
TateRob platform: In the experiments presented in 
this study, we use the TateRob Fig. 1. The key 
performance specifications of TateRob are: 
 
• Total mass 20.5 kg 
• Length 0.5×0.5×0.4 m 
• Maximum speed 3 m sec−1 
 

 
 
Fig. 1: TateRob platform 

 Due to the desired tasks and the environment in 
which the robot has been designed to operate, vision 
was chosen as the primary sensor for navigation. It is 
also expected that in the environments with sufficient 
features and color information TateRob can make 
accurate vision-based odometry estimation. Therefore, 
the vision system consists of a stereo camera. By 
changing the lens, the peripheral and foeval vision can 
be realized.  
 In order to operate in environments with 
insufficient lighting conditions, the TateRob is 
equipped with Laser range sensor. The SICK LMS 200 
used in our experiments has a field-of-view of 180° and 
returns 181 distance readings (one per degree). The 
maximum error is +/-3 cm per 80 m. 
 The robot is actuated by two 24 V batteries. One of 
the batteries actuates the motors and the other one the 
main CPU and the sensors. A PC/104 stack running the 
Linux operating system provides the software interface 
to record and process all the sensor information in real 
time. The robot can communicate with the operator by 
wireless LAN in a maximum distance of 100 m. 
 The robot can operate in the following different 
modes: 
 
• The robot can move in the environment controlled 

by a joystick: 
• Directly connected with the robot 
• Connected with operator PC and remotely 

controlling the robot 
• The operator can control the robot remotely by 

sending commands like move forward, rotate right 
or left 

• The robot can operate autonomously by processing 
the sensors data in the onboard computer  

 
Neural controller: In order to calculate the sensory 
input of the neural controller, the captured color image 
is converted to a binary image, as shown in Fig. 2. The 
input of the visual processing module is the image 
frame captured from the robot’s camera. The image first 
is converted to a grey scale and then to a binary image 
Fig. 3. In our implementation the size of captured 
image is 240×320 pixels.  
 We implemented a feed-forward neural controller 
Fig. 4 with 20, 4 and 2 units in the input, hidden and 
output layers, respectively. A set of visual neurons, 
arranged on a 2×10 grid, receive information about the 
grey level of the corresponding pixels in the image 
provided by the camera of the robot. Each input unit 
covers an area of 50×32 pixels in the image. In order to 
increase the image processing speed, only the half-bottom 
of  the  captured  image  is  processed (100×320 pixels). 
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Fig. 2: Image processing algorithm 
 

 
 

Fig. 3: Sample of image processing 
 

 
 
Fig. 4: Neural controller 
 
The activation of input units, scaled between 0 and 1, is 
given by the average grey level of all pixels within the 
partition. The hidden and output units use sigmoid 
activation function: 
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Fig. 5: GA cycle 
 
where the incoming activation for node i is: 
 

i j ji jx w y=∑   (2) 

 
and j ranges over nodes with weights into node i.  
 The output units directly control the right and left 
wheel angular velocities where 0 corresponds to no 
motion and 1 corresponds to full-speed forward 
rotation. The left and right wheel angular velocities, 
ωright and ωleft, are calculated as: 
 

right max right

left max left

*y

* y

ω = ω

ω = ω
  (3) 

 
Where: 
ωmax = The maximum angular velocity  
yright and yleft = The neuron outputs 
  
 The maximum forward velocity is considered to be 
0.5 m sec−1.  
 
Evolutionary algorithm: GA is a search algorithm 
based on the mechanics of natural selection and 
population genetics. The search mechanism is based on 
the interaction between individuals and the natural 
environment. GA comprises a set of individuals (the 
population) and a set of biologically inspired operators 
(the genetic operators). The individuals have genes, 
which are the potential solutions for the problem. The 
genetic operators are crossover and mutation. GA 
generates a sequence of populations by using genetic 
operators among individuals. Only the most suited 
individuals in a population can survive and generate 
offspring, thus transmitting their biological heredity to 
the new generation.  
 GA operates through a simple cycle of four stages, 
as shown in Fig. 5. Each cycle produces a new 
generation of possible solutions for a given problem. At 
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the first stage, an initial population of potential 
solutions is created as a starting point for the search. In 
the next stage, the performance (fitness) of each 
individual is evaluated with respect to the constraints 
imposed by the problem. Based on each individual’s 
fitness, a selection mechanism chooses “parents” for the 
crossover and mutation operators. 
 The crossover operator takes two chromosomes 
and swaps part of their genetic information to produce 
new chromosomes. The mutation operator introduces 
new genetic structures in the population by randomly 
modifying some of the genes, helping the search 
algorithm to escape from local minima’s traps.  
 The offspring’s produced by the genetic 
manipulation process are the next populations to be 
evaluated. GA can replace either a whole population or 
its less fitted members only. The creation-evaluation- 
selection-manipulation cycle repeats until a satisfactory 
solution to the problem is found or some other 
termination criteria are met. 
 For any evolutionary computation technique, a 
chromosome representation is needed to describe each 
individual in the population. In our implementation, the 
genome of every individual of the population encodes 
the weight connections of the neural controller as a real 
number. The genome length is 88 and the connection 
weights range from -5 to 5. Each individual of the 
population controls the TateRob during a  lifetime  of 
50 sec (50 m sec×1000 time steps). At the end, the 
fitness function is calculated. The fitness function 
selects robots for their ability to move among 
obstacles as long as possible for the duration of the 
life of the individual. Therefore, the fitness is the 
distance traveled by the robot. Every-time that the 
robot hits an obstacle (detected by the laser sensor), 
the robot moves backward and the remained lifetime 
is reduced by 100 steps. 
 In the first generation 60 neural controllers with 
randomly selected weight connections are generated. In 
the second generation the population size is reduced to 
20, by selecting the best individuals of the first 
generation based on the fitness value. The evolution 
terminated after 9 generations. 
 

RESULTS AND DISCUSSION 
 
 In order to evaluate the performance of evolved 
neural controllers, we developed an algorithmic 
navigation method where the right and left wheel 
angular velocities are calculated based on the average 
grey level of pixels in the left and right visual field. The 
angular velocity of right wheel is considered inverse 

proportional with the average gray level of bottom left 
half of visual field and vice-versa Fig. 6. 
 Figure 7a and b show the performance of the 
algorithmic method for two different maximum 
velocities, 0.5 and 0.3 m sec−1, respectively. At the 
beginning, the robot avoids collision with an obstacle 
and moves fast in the environment Fig. 7a. Then, 
obstacles become visible in the right half of the visual 
field. However, due to the restriction in the bottom part 
of the visual field, the obstacle in the front of the robot 
(middle upper part of the image) is not considered. 
Therefore, the small number of black pixels in the 
bottom right corner does not have a great effect on 
reducing the angular speed of the left wheel, making 
impossible for the robot to avoid hitting the obstacle.  
 When the robot was controlled using the 
algorithmic method, but the maximum velocity is 
reduced to 0.3 m sec−1, the robot was able to navigate 
through the obstacles, as shown in Fig. 7b. Due to the 
low speed motion, the right and left angular velocities 
are updated in a shorter moving distance. Therefore, the 
robot trajectory is different compared with the previous 
experiment Fig. 8. 
 Figure 7c shows the performance of robot 
controlled by the best evolved neural controller. The 
maximum velocity is 0.5 m sec−1. The robot avoids 
obstacles and outperformed the algorithmic method by 
moving smoothly among obstacles.  
 

 
 
Fig. 6: Algorithmic method for robot navigation 
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 (a) (b) 
 

 
(c) 

 
Fig. 7: Video capture of robot motion. (a) Algorithmic method with max. speed 0.5 m sec−1; (b) Algorithmic 

method with max. speed 0.3 m sec−1; (c) Neural Controller  with max.  speed 0.5 m sec−1 

 

 
 (a) (b) (c) 
 

Fig. 8: TateRob trajectory. (a) Algorithmic method with max. speed 0.5 m sec−1; (b) Algorithmic method with max. 
speed 0.3 m sec−1; (c) Neural Controller  with max. speed 0.5 m sec−1
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Fig. 9: Hilton diagram of weight connections 
 

 
 

 
 

 
 

Fig. 10: Performance of neural controllers in different environment 
 

 The Hinton diagram of the weight connections 
Fig. 9 shows that input neurons positioned in the center 
of the visual field have positive connections with the 
hidden neurons. In addition, most of hidden neurons 
also have positive connections with output neurons that 
control the right and left wheel angular velocities. 
Therefore, the robot moves fast in the forward direction 
when there is no obstacle in the front. When an obstacle 
enters in the visual field in the left or right side, the 
respective wheel’ angular velocity is reduced due to the 
negative connection weights and the robot avoids 
hitting the obstacles.  
 The performance of the evolved neural controllers 
was also tested in environments different from those in 
which they had been evolved Fig. 10. Figure 10 shows 
that evolved neural controllers generalize well in new 
environments. However, in certain specific 

environments, the evolved neural controllers failed to 
perform well. For example, in some specific lighting 
conditions, the TateRob hit the obstacles during the 
navigation.  
 

CONCLUSION 
 
 This study presented an evolutionary based method 
for robot navigation in human environments. Neural 
controllers were evolved online using the TateRob and 
the validity of the proposed method has been proved 
experimentally. The results show that the evolved 
neural network outperforms an algorithmic method for 
robot navigation. In the future, it will be interesting to 
investigate how the size of the visual field and the 
number of partitions influence the neural controller 
performance.  
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