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A method is proposed for determining the motion of a body relative to a fixed environment
using the changing image seen by a camera attached to the body. The optical flow in the image
plane is the input, while the instantaneous rotation and translation of the body are the output.
If optical flow could be determined precisely, it would only have to be known at a few places to
compute the parameters of the motion. In practice, however, the measured optical flow will be
somewhat inaccurate. It is therefore advantageous to consider methods which use as much of
the available information as possible. We employ a least-squares approach which minimizes
some measure of the discrepancy between the measured flow and that predicted from the
computed motion parameters. Several different error norms are investigated. In general, our
algorithm leads to a system of nonlinear equations from which the motion parameters may be
computed numerically. However, in the special cases where the motion of the camera is purely
translational or purely rotational, use of the appropriate norm leads to a system of equations
from which these parameters can be determined in closed form.

1. INTRODUCTION

In this paper we investigate the problem of passive navigation using optical flow
information. Suppose we are viewing a film. We wish to determine the motion of the
camera from the sequence of images, assuming that the instantaneous velocity of the
brightness patterns, also called the optical/low, is known at each point in the image.
Several schemata for computing optical flow have been suggested (e.g., [2, 3, 5]).
Other papers (e.g., [9, 11, 12]) have previously addressed the problem of passive
navigation. Three approaches can be taken towards a solution which we term the
discrete, the differential, and the continuous approach.

In the discrete approach, information about the movement of brightness patterns
at only a few points is used to determine the motion of the camera. In particular,
using such an approach, one attempts to identify and match discrete points in a
sequence of images. Of interest in this case is the photogrammetric problem of
determining what the minimum number of points is from which the motion can be
calculated for a given number of images [10-12, 16, 17]. This approach requires that
one tracks features, or identifies corresponding features in images taken at different
times. In their work, Tsai and Huang [16] assumed that such corresponding points
can be determined in two images. Then they showed that in general seven points are
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sufficient to determine the motion uniquely. They prove furthermore that such
points have to satisfy a fairly weak constraint. Longuet-Higgins' work [10] is fairly
similar to [16] but he fails to show under which conditions the motion can be
determined uniquely from corresponding points.

In the differential approach, the first and second spatial partial derivatives of the
optical flow are used to compute the motion of a camera [6, 9]. It has been claimed
that it is sufficient to know the optical flow and both its first and second derivatives
at a single point to uniquely determine the motion [9]. This is incorrect (except for a
special case) [1]. Furthermore, noise in the measured optical flow is accentuated by
differentiation.

In the continuous approach, the whole optical flow field is used. A major
shortcoming of both the local and differential approaches is that neither allows for
errors in the optical flow data. This is why we choose the continuous approach and
devise a least-squares technique to determine the motion of the camera from the
measured optical flow. The proposed algorithm takes the abundance of available
data into account and is robust enough to allow numerical implementation.

Independently, Prazdny chose in [13] a similar approach to ours. He also proposes
the use of a least-squares method to determine the motion parameters but never
discusses exactly how this is to be done. Consequently, he does not show whether his
scheme can be used to uniquely determine the motion.

2. TECHNICAL PREREQUISITES

In this section we review the equations describing the relation between the motion
of a camera and the optical flow generated. We use essentially the same notation as
[9]. A camera is assumed to move through a static environment. Let a coordinate
system X, Y, Z be fixed with respect to the camera, with the Z axis pointing along
the optical axis. If we wish, we can think of the environment as moving in relation to
this coordinate system. Any rigid body motion can be resolved into two factors, a
translation and a rotation. We shall denote by T the translational component of the
motion of the camera and by u its angular velocity (see also Fig. 1 which is redrawn
from [9]). Let the instantaneous coordinates of a point P in the environment be
( X , Y, Z). (Note that Z > 0 for points in front of the imaging system.) Let r be the
vector ( X , Y, Z)^, where T denotes the transpose of a vector; then the velocity of P
with respect to the X, Y, Z coordinate system is

V = - T - u X r . (1)

We define the components of T and u as

T=(U,V,wf, (o= (A,B,Cy.

Thus we can rewrite (1) in component form:

X' = -U- BZ+ CY,
Y' = -V- CX+AZ,
Z' = -W-AY+BX,

where ' denotes differentiation with respect to time.

(2)

(3)
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FIG. 1. Coordinate system.

The optical flow at each point in the image plane is the instantaneous velocity of
the brightness pattern at that point. Let (x, y ) denote the coordinates of a point in
the image plane (see Fig. 1). Since we assume perspective projection between an
object point P and the corresponding image point;?, the coordinates o f p are

x = X / Z , y = Y/Z.

The optical flow, denoted by (u, v), at a point (x, y ) is

u = x', v = y ' .

(4)

(5)

Differentiating (4) with respect to time and using (3) we obtain the following
equations for the optical flow:

U \ f W '1
- B + Cy - x - — - Ay + Bx» =

y_ xz'
I \ ^ iZ

Y'
Z2

YZ'
Z
V
z

W
Zv = C x + A } - y { • Ay + Bx .z z2

We can write these equations in the form

y = », + «,.> v v,+v,

(6)

(7)

where («,, u,) denotes the translational component of the optical flow and («r> "r)
the rotational component:

-U+ xW".=——^——,

u, = Axy - B(x2 + 1) + Cy,

-V+yW
v ^ — — Z -

v, = A(y2 + 1) - Bxy - Cx.

(8)

So far we have considered a single point P. To define the optical flow globally we
assume that P lies on a surface defined by a function Z = Z(X, Y) which is positive
for all values of X and Y. With any surface and any motion of a camera we can
therefore associate a certain optical flow and we say that the surface and the motion
generate this optical flow.
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Optical flow, therefore, depends upon the six parameters of motion of the camera
and upon the surface whose images are analyzed. Can all these unknowns be
uniquely recaptured solely from optical flow? The answer is no. To see this, consider
a surface S^ which is a dilation by a factor k of a surface 5'r Further, let two motions
denoted by M, and At; have the same rotational component and let their transla-
tional components be proportional to each other by the same factor k (we shall say
that Mi and At; are similar). Then the optical flow generated by S^ and M^ is the
same as the optical flow generated by S^ and M^. This follows directly from the
definition of optical flow (8). It is still an open question whether there are any other
pairs of distinct surfaces and motions which generate the same optical flow.

Determining the motion of a camera from optical flow is much easier if we are
told that the motion is purely translational or purely rotational. In the next two
sections we shall deal with these two special cases. Then we shall analyze the case
where no a priori assumptions about the motion of the camera are made.

3. TRANSLATIONAL CASE

In this section we discuss the case where the motion of the camera is assumed to
be purely translational. As before, let T = (U, V, W) be the velocity of the camera.
Then the following equations hold (see (8)):

u,=(-U+xW)/Z, Vt=(-V+yW)/Z. (9)

3.1. Similar Surfaces and Similar Motions
It will be shown next that if two flows generate the same optical flow, and we

know that the motions are purely translational, then the two surfaces are similar and
the two camera motions are similar. Let Z, and Z; be two surfaces and let
I, = (t/i, F], W^ and T^ = (U^, V^, W^f define two different motions of a camera,
such that Z, and T] and Z; and T^ generate the same optical flow:

»=(-L/,+^,)/Z,, »={-V,+yW,)/Z,, (10)

u-(-£4+^)/Z2, c=(-V^+yW^/Z^ (11)

Eliminating Z\, Z;, u, and v from these equations we obtain

- [7, + xWt _ - I/; + xW^
- V^ 4- yW^ ~ - V^ + yW^ •

(12)

We can rewrite this equation as

(-U,+xW,)(-V,+yW,)='(-U^+xW,)(-V,+yW^), (13)

or

t/,K, - xV^ - yU^ + xyW^ = U^ - xV^ - yU^Wi + xyW^.

(14)

Since we assumed that Z^ and T, and Z; and T; generate the same optical flow, the
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above equation must hold for all x and y. Therefore the following equations have to
hold:

Wi = W, - V^W, = - V,W^, - U,W^ = - l/^i. (15)

These equations can be rewritten as

t/i:7i:^i = V^.V^-.W^ (16)

from which it follows that Z; is a dilation of Zp It is clear that the scaling factor
between Z, and Z; (or equivalently between T, and T^) cannot be recovered from
the optical flow, regardless of the number of points at which the flow is known. By
uniquely determining the motion of the camera, we shall mean that the motion is
uniquely determined up to a constant scaling factor.

3.2. Least-Squares Formulation

In general, the directions of the optical flow at two points in the image plane
determine the motion of a camera in pure translation uniquely. There is a drawback,
however, to utilizing so little of the available information. The optical flow we
measure is corrupted by noise and it is desirable to develop a robust method which
takes this into account. Thus we suggest using a least-squares method [4, 14] to
determine the movement parameters and the surface (i.e., the best fit with respect to
some norm).

For the following we assume that the image plane is the rectangle x e [-w, w]
and y e[—h, h]. The same method applies if the image has some other shape. (In
fact, it can be used on subimages corresponding to individual objects in the case that
the environment contains objects which may move relative to one another). Further-
more we have to assume that 1/Z is a bounded function and that the set of points
where 1/Z is discontinuous is of measure zero. This condition on 1/Z assures us
that all necessary integrations can be carried out. We wish to minimize the
expression

rh [«\i - U + x W \ 1 ! -V+yW\2} , , .,-.
J J " ~ — — 7 — — ' ^ r " — — — — — } \ d x d y . (17)
• '-A-'-wLv ^ I \ ^ I \

In this case then, we determine the best fit with respect to the ML^ norm which is
defined as

ll/(^)ll=r r' [ f ^ y ^ d x d y . (18)
•'-hJ-w

The steps in the least-squares method are as follows: First we determine that Z
which minimizes the integrand of (17) at every point (x, y). Then we determine the
values of U, V, and W which minimize the integral (17).

Let us introduce the abbreviations

a = - U + xW, f t = - V + yW. (19)
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Note that the expected flow, given U, V, and W ,̂ is simply

u = a/Z, u = P / Z . (20)

Then we can rewrite (17) as

/'/"[(-^(•'-Dl'^- P-)"-h"-wi' ^ I \ ^ I \

We proceed now with the first step of our minimization method. Differentiating the
integrand of (17) with respect to Z and setting the resulting expression equal to zero
yields

(-^+('1-^-0• <22'
Therefore we can write Z as

-^ <")
This equation, by the way, imposes a constraint on U, V, and W, since Z must be
positive. We do not make use of this except to help us pick one of two opposite
solutions for the translational velocity later on. Note that now

a -uft - va ft uj8 - va , .
u--7=P———-T> v-—=-a———•— (24)

Z a2 + j82 Z a2 + ft2

and we can therefore rewrite (17) as

/" !' ^^——Î - P5)•'-h-'-w a- + j8-

It should be clear, by the way, that uniformly scaling U, V, and W does not change
the value of (25). This is a reflection of the fact that we can determine the motion
parameters only up to a constant factor.

Before proceeding with the second step, we give a geometrical interpretation in
Fig. 2 of what we have so far. Suppose that the motion parameters U, V, and W are
given. At any given point, say (xy, yo), optical flow depends not only upon the
motion parameters but also upon the value of Z at that point, Zg say. However, the
direction of («, v) does not depend upon Zy. The point (u, v) must he along the line
L in the uv plane defined by the equation u f t - va = 0. Let the measured optical
flow at ( X y , YQ) be denoted by («„, Cy,), and let the closest point on the line L be
(«„, v^). This corresponds to a particular Zg given by (23). The remaining error is
the distance between the point (t<m, Vm) and the line L. The square of this distance is
given by the integrand of (25).
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PIG. 2. Geometrical interpretation.

For the second step, we differentiate (25) with respect to U, V, and W and set the
resulting expressions equal to zero:

f r /w-^)(^+^.^ o
J.hJ-^ (a^2)2

- f r «("/?-^)("«+^)^ , o
J-hJ-» (a^jS2)2

rh r» (ya - xft}(uft - va)(ua + vp) ̂  ^

J-HJ-» (a2 + IS2)2

(26)

Let us introduce the abbreviation

^ (up - ca)(ua + t^)

("2+^)2
(27)

Then Eqs. (26) can be rewritten as

rh tw

r r [{-V+yW)K}dxdy=Q,
•'-h-l-w

-r r [(-t/+^^)^]^^=o,
•'-h-'-w

r ^[(->'[/+;CF)^]^^=0•
•'-A'-w

(28)

The sum of U times the first integral, V times the second integral, and W times the
third integral is identically zero. Thus the three equations are linearly dependent.
This is to be expected, for if

f(kU,kV,kW)=f(U,V,W), (29)
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where / is a differentiable function and k a constant, then

U-^ + v91- + W^- = 0 f30)
9U 9V " QW Y~v'

The result is also consistent with the fact that only two equations are needed, since
the translational velocity can be determined only up to a constant factor. Unfor-
tunately, Eqs. (28) are nonlinear in U, V, and W and we are not able to show that
they have a unique (up to a constant scaling factor) solution.

3.3. Using a Different Norm
There is a way, however, to devise a least-squares method which allows us to

display a closed form solution for the motion parameters. Instead of minimizing
(17), we shall try to minimize the expression

U'lu-^w}l^-=xywA{^^dy (31)

obtained by multiplying the integrand of (17) by a2 + j82. Then we apply the same
least-squares method as before to (31). When the measured optical flow is not
corrupted by noise, both (31) and (17) can be made equal to zero by substituting the
correct motion parameters. We thus obtain the same solution for the motion
parameters whether we minimize (31) or (17). If the measured optical flow is not
exact, then using expression (31) for our minimization, we obtain the best fit with
respect not to the ML; norm, but to another norm which we call the ML^ norm,

\\f(x, y)\\^ = f {w [ f ( x , y)]\a2 + /?2) dx dy. (32)
- —h" —w

What we have here is a minimization in which the error contributions are weighted,
greater importance being given to points where the optical flow velocity is larger.
This is most appropriate when the measurement of larger velocities is more accurate.

Which norm gives the best results depends on the properties of the noise in the
measured optical flow. The first norm is better suited to the situation where the noise
in the measurements is independent of the magnitude of the optical flow. Note also
that if we really want the minimum with respect to the ML^ norm, we can use the
results of the minimization with respect to the ML^p norm as starting values in a
numerical minimization.

We discuss now our least-squares method in the case where the norm is chosen to
be ML^o. First we determine Z by differentiating the integrand of (31) with respect
to Z and setting the result equal to zero. We again get (22),

f a\ a i ft\ ft „
["-zlz^r 'zjz2 '0 ' (33)

from which (23) follows:

Z
q^2

ua + oj8'
(34)
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So we want to minimize

f F {u^-vafdxdy. (35)
- — h~ — w•'-h-'-w

Let us call this integral g(U, V, W); then, since

uft - va = (vU - uV) - (xc - yu)W, (36)
t

we have

g(U, V, W) = aU2 + bV2 + cW2 + IdVV + leVW + IfWU, (37)

where

f h fw . . . . rh f »a = [ f v2dxdy, b = [h F u2 d x d y ,
•'-h'-w "-h'-w

c = {h F {xc - yu)2 d x d y , d = - [ l t F w dx dy, (38)
•'-h'-w •'-h-'-w

e = f f u{xv - yu) dxdy, f = - f ( v(xv - yu) dxdy.
•'_l,^_w •' -h-'_„,'-h-'-w •'-h-'-w

Now g(U, V, W) cannot be negative, and g(U, V, W) = 0 for U = V = W = 0. Thus
a minimum can be found by inspection, but is not what we might have hoped for. In
fact, to determine the translational velocity using our least-squares method we have
to solve the following homogeneous equation for T:

GT = 0, (39)

where G is the matrix

a d f
G= d b e . (40)

f e e

Clearly, (39) has a solution other than zero if and only if the determinant of G is
zero. Then the three equations (39) are linearly dependent and T can be determined
up to a constant factor. In general, however, as the data are corrupted by noise, g
cannot be made equal to zero for nonzero translational velocity and so T = (0,0,0)^
will be the only solution to (39). To see this in another way, note that g has the form

g{kU,kV,kW}=k^g(U,V,W), (41)

where k is a constant. Clearly, g(U, V, W) assumes its minimal value for U = V =
W=0.

What we are really interested in is determining the direction of T which minimizes
g, for a fixed length of T. Hence we impose the constraint that T be a unit vector. If
T is constrained to have unit magnitude, the minimum value of g is the smallest
eigenvalue of the matrix G and the value of T for which g assumes its minimum can
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be found by determining the eigenvector corresponding to this eigenvalue [8]. This
follows from the observation that g is a quadratic form which can be written as

g(U,V,W)=^''TG^•. (42)

Note that G is a positive semidefinite Hermitian matrix as a > 0, b > 0, c > 0,
ab > d2, be > e2, and ca > /2. (The last three inequalities follow from the
Cauchy-Schwarz inequality [7, 8].) Hence all eigenvalues are real and nonnegative
and are the solutions \ of the third degree polynomial

\3 - (a + b + c)\2 + (ab + be + ca - d2 - e2 -/^X
+ (ae2 + b f 2 + cd2 - abc - I d e f ) = 0.

(43)

There is an explicit formula for the least positive root in terms of the real and
imaginary parts of the roots of the quadratic resolvent of the cubic. In our case this
gives us the desired smallest root, since the roots cannot be negative. For the sake of
completeness, however, various pathological cases that might come up will be
discussed next, even though they are of little practical interest.

Note that \ = 0 is an eigenvalue if and only if G is singular, that is, if the constant
term in the polynomial (43) equals zero. In fact, if the determinant of G is zero one
can find a velocity T which makes g zero. It follows from a theorem in calculus that
this happens only when the optical flow is either not corrupted by noise at all or
only at a few points. The theorem states that if the integral of the square of a
bounded and continuous function is zero, then the function itself is zero. Hence,
errors can only occur at points where the optical flow is discontinuous, and these are
exactly the points where the surface defined by Z is discontinuous. (These are also
the places where existing methods for computing the optical flow [5] are subject to
large errors.)

It is impossible for exactly two eigenvalues to be zero, since this would imply that
the coefficient of \ in the polynomial (43) equaled zero, while the coefficient of X2

did not. That in turn would imply that ab = d2, be = e2, and ca = f 2 , while a, b,
and c are not all zero. For equality to hold in the Cauchy-Schwarz inequalities,
however, « and v must both be proportional to xv — yu. This can only be true (for
all x and y in the image) if u = v = 0. But then all six integrals become zero and
consequently all three eigenvalues are zero. This situation is of little interest, since it
occurs only when the optical flow data is zero everywhere. Then the velocity is zero
too. Once the smallest eigenvalue is known, it is straightforward to find the
translational velocity which best matches the given data. To determine the eigenvec-
tor corresponding to an eigenvalue, say X,, we have to solve the following set of
linear equations:

(a-\)U+dV+fW=0,

dU+(b-\)V+eW=0, (44)

fU+ eV+ (c-\)W==0.

As \, is an eigenvalue, Eqs. (44) are linearly dependent. Let us for a moment assume
that all eigenvalues are distinct, that is, the rank of the matrix (G - \I), where I is
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the identity matrix, is 2. Then we can use any pair of them to solve for U, V in terms
of W, say. There are three ways of doing this. For numerical accuracy we may add
the three results to get the symmetrical forms

U=(b- A,)(c - A,) -f(b - Ai) - d(c - Xi) + e(f+ d - e),

V= (c - X,)(a - Ai) - d{c - A.) - e(a - \,) + f(d + e -/), (45)

W= (a - Ai)(& - A,) - e(a - A,) -f(b - A,) + d(e +f- d).

Note that A, will be very small, if the data is good, and one may wish to just
approximate the exact solution by using the above equations with A] set to zero.
(Then there is no need to find the eigenvalue.) In any case, the resulting velocity may
now be normalized so that its magnitude equals one. There is one remaining
difficulty, arising from the fact that if T is a solution to our minimization problem,
so is -T. Only one of these solutions will correspond to positive values of Z in Eq.
(34), however. This can be seen easily by evaluating (34) at some point in the image.
The case where the two smallest eigenvalues are the same will be discussed in one of
the next paragraphs.

There is a simple geometrical interpretation of what we have done so far. To this
end we consider the surface defined by g(U, V, W) = k, where k is a constant. Note
that we can always find a new coordinate system U, V, W in which g(U, V, W) can
be written as

A,(/2 + \^V2 + \^W1 = k, (46)

where A, for i = 1,2,3, are the three eigenvalues of the quadratic form. If the
eigenvalues are all nonzero, the surface g(U, V, W) = k is an ellipsoid with three
orthogonal semiaxes of length | ̂ k/\, \. We are particularly interested in the case
where the constant k is the smallest eigenvalue. Then all three semiaxes have lengths
less than or equal to one. Hence the ellipsoid lies within the unit sphere. If the two
smallest eigenvalues are distinct, the unit sphere touches the ellipsoid in two places,
corresponding to the largest axis. If the two smaller eigenvalues happen to be the
same, however, the unit sphere touches the ellipsoid along a circle and as a result all
the velocity vectors lying in a plane spanned by two eigenvectors give equally low
errors. Finally, if all three eigenvalues are equal, no direction for T is preferred, since
the ellipsoid becomes the unit sphere.

The case where exactly one eigenvalue is zero also has a simple geometrical
interpretation. The surface defined by g(U, V, W) = 0 is a straight line, which can be
seen easily from

\ft2 + \^ = 0 (47)

written for the case when A 3 is zero. (Remember that A, and \ 2 are both positive.)
Clearly, the unit sphere intersects this line in exactly two points, one of them
corresponding to positive values for Z in Eq. (34).

The method which we just described can be easily implemented. To this end, the
problem can be discretized. An expression similar to (31) can be derived where the
integrals are approximated by sums. Our minimization method can then be applied
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to these sums. The resulting equations are similar to ones described in this section,
with summation replacing integration. We implemented the resulting algorithm and
tested it using synthetic data including additive noise. The results agreed with our
expectations.

One can use the ratio of the biggest to the smallest eigenvalue, the so-called
condition number [15], as a measure of confidence in the computed velocity. The
result is very sensitive to errors in the measurements unless this ratio is much bigger
than one.

Curiously, the same error integral as (35) is obtained in the case where the MLZy,,
norm is used:

llA^llz^r /w [f{x,y)Z(x,y)•}\u2+v2)dxdy. (48)
•'-h-'-w

We can arrive at a similar solution by multiplying the integrand in (17) by Z2

instead of by a2 + j82. In that case the minimization is carried out with respect to
the ML,z norm defined by

11/(^ y)\\z = r r [/(^ y)Z(x, y)}2 dx dy. (49)
•'-h^-w

Here optical flow velocities for points which are further away are weighted more
heavily. This is most appropriate when the measurement of larger velocities is less
accurate. We end up with a quadratic form similar to g, but the integrals for the six
constants corresponding to a, b, c, d, e and/are a bit more complicated. Curiously,
they only depend on the direction of the optical flow at each point, not its
magnitude.

Also, other constraints could be used. If we insist on U2 + V1 = 1, for example,
we obtain a quadratic instead of a cubic equation, and if we use W = 1, only a linear
equation needs to be solved. The disadvantage of these approaches is that the result
is sensitive to the orientation of the coordinate axes. Clearly, in the case of exact
data, we get the right solution using any of the constraints mentioned above.

3.4. Using a Different Constraint
The minimization scheme discussed in the previous section gives us a unique

solution in most cases for the velocity vector T. Here we propose a slightly different
approach which always gives us a unique solution. Note that applying the first step
in our minimization method gives us a constraint between the values of Z, the
velocity vector and the optical flow at every point. We can in addition assume that
Z = Zo is known at a particular point, say (xy, Yo)- Using the AfL^yp norm in our
scheme, we want to minimize

[h (w [uZ-(-U+xW)}2+[vZ-(-V+yW^^+v^dxdy. (50)
J-h-f-w

Differentiating (50) with respect to Z, and setting the resulting expression equal to
zero, we obtain

Z^"^. (51)
u- + v
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Thus we propose to solve the minimization scheme under the constraint

Zo^+v^-iu^+v^^O, (52)

where Kg and Vy denote the components of the optical flow measured at (xy, yo), and
ay and /?o denote a and f t evaluated at (xy, yo)- The error integral (50) becomes,
after substituting (51),

f f ( ^ - v a f d x d y (53)
•l-h-'-w

which is the same as (35) and is denoted by g(U, V, W) (37). Thus we want to
' minimize

g(U,V,W) + 2\[Zo(»^ + v2) - ("o"o + "(A)L (54)

where \ denotes a Lagrangian multiplier. To determine U, V, and W the following
linear equations obtained by differentiating (54) with respect to U, V, W, and \ have
to be solved:

aU + dV + fW + \UQ = 0,
dU + bV + eW + \CQ = 0,

fU + eV + cW - X(xo«o + Wo) = 0,
UyU+VoV- (xyUo +yoVo)W= -Zo{u2, + v2).

These equations can be written in the form

GJx = F, (56)

where T^ = (U, V, W, \Y and F = (0,0,0,- Zo(i^ + î ))1'. Let the determinant of
G,be

Ao = (d2 - ab)(xoUo + Wo)2 + (e2 - bc)u^ + (f2 - ac)v2,

+2[(de - bf)uo{xoUo + Wo) (57)

+ (df- ae)vo(xoUo+yoVy) +(cd- ef)uoVo].

Assuming that AQ ^ 0 we can easily determine T^ from (55),

T,=G,-'F. (58)
Introducing the abbreviation

K=Z^+v2,)/^ (59)

we can give these formulas for T^:

U= K[uo(bc - e2) + v^ef- cd) + (x^o + y^)(bf - de)},

V=K[uo(ef- cd) + Vo(ac-f2) + (^"o +Wo)(ae - df)],

W=K[uo(de - bf) + Vo(df - ae) + (x^o + y^d2 - ab)],

\=K [ae2 + cd2 + bf2 - abc - 2def].
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The disadvantage of this approach is that the result depends upon the values of the
optical flow at a single point. To circumvent this problem we propose to determine
average values for U, V, and Wm the following manner: First note that we are only
interested in the ratios of U/W and V/W which obviously do not depend upon the
(unknown) value for Zg. Equivalently, we could determine the value for K from the
condition that T should have unit length. Hence, we can determine values for U, V,
and W which depend only upon the values of the optical flow at a single point and
the coefficient in the matrix G. If we want to remove the dependence of the result on
the data at a single point, we can simply average the values obtained for all image
points.

In the case where the data is exact, i.e., where the determinant of G, denoted by
det G, vanishes, the solution for T is the same one as obtained using no constraint in
our minimization scheme. To see this just observe that in that case \ = 0 as
\ = -KdetG. In the case where Ao = 0, Eqs. (55) have a solution only when
detG = 0. We do not have to be concerned with the case where A() = 0 but
det (7 ̂  0 as we can argue that Eqs. (55) always have to have a solution. Note that
our method is based on the condition that Z is a certain function (51) of U, V, W.
Hence, (52) cannot impose a constraint which would be impossible to satisfy.

The methods discussed in this section have been applied to noisy synthetic data
with the expected results.

4. ROTATIONAL CASE

Suppose now that the motion of the camera is purely rotational. In order to
determine the motion from optical flow we again use a least-squares algorithm with
the ML; norm described in Section 3. Recall that in this case the optical flow is (see
(8)),

u^Axy-B^+^+Cy, D, = A(y2 + l) - Bxy - Cx. (61)

We shall show now in an analogous fashion to Section 3.1 that two different
rotations, say w^ = (A^, B^C^ and u; = (A^, B^, C^, cannot generate the same
optical flow. Assuming the converse, the following equations have to hold for all
values of x and y:

A^xy - Bi(x2 + 1) + C^y = A^xy - B^x2 + 1) + C^y,
A,{y2 + 1) - B,xy - C^x = A^(y2 + l) - B^xy - C^x,

(62)

from which we can immediately deduce that U) = u;.
In general, the direction of the optical flow at two points and its magnitude at one

point determine the motion of a camera in pure rotation uniquely. We choose
instead to minimize the expression

f r [ ( u - u ^ + ( v - v ^ ] d x d y . (63)
•' — h*' — ui-h-'-w

As the motion is purely rotational, the optical flow does not depend upon the
distance to the surface and therefore we may omit the first step in our method. Thus
we immediately differentiate (63) with respect to A, B, and C and set the resulting
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expressions equal to zero,

f h /•w

f f [(u - u,)xy +(v- v,){y2 + l)j dxdy = 0,
• —h~ —w

( h (w [(u - u,)(x2 + 1) + (u - c,)xy] dx dy = 0, (64)
• —h" —w

^ r [(« - u,)y - (v - v,)x] dx dy = 0.
'-h'-w

Rewriting the above equations we obtain

f F [uxy + v(y2 + 1)] dxdy=f f [u,xy + v,(y2 + l)j dxdy,
•-h'-w •'-h'-w

{h r [u(x2 + 1) + u^] dxdy = f' F [«,(x2 + 1) + v,xy} dxdy, (65)
•'-A'-w •'-h'-w

f f [uy - vx} dx dy = I ( [u,y - v,x] dx dy,[u,y - v,.
'-h-'-w ''-h-'-w•/_i,^_,., .'_),./_,„

and expanding these equations yields

aA + dB + f C = k, dA+bB +eC= I , f A + eB + cC = m, (66)

where

a = S h f [xV + (^2 + I)2] d x d y , b={h f [(x2 + I)2 + x^y2] dxdy,
" — h ' — w ' — h ' — w•'-h'-w •'-h'-w

c^f F^+y^dxdy, -d=-^ f
•'-h'-w '-h'-w

eh fw . . -. th ^w

c ={" I" [x2+y2] d x d y , d = - {" f [xy(x2 + y2 + 2)] d x d y ,
•'-/I'-w •'-h'-w

0=-^ C ydx dy, f = - f f xdx dy, (67)
" —fc - _„, •'—h-'—u,'-h'-w '-h'-w

and

k= ( f [uxy + v(y2 + l)] (fcc^,
'-h' -w

/ = - r r ["(;c2 + 1) + ̂ y}dx dy' (68)
•'-/l-'-w•'-h-'-w

- [ h r rm = I I | uy — ex
•'-h-'-w

m = f f [uy — vx} dxdy.
J -.h J -u,

If we call the coefficient matrix in (66) At and the column vector on the right-hand
side n, then we have

Mw = n. (69)

Thus, provided the matrix M is nonsingular, we can compute the rotation as

u = A f - ' n . (70)

It is easy to see that the matrix M is nonsingular in the special case of a rectangular
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image plane since then

- A ^ ( h 4 2 h 2 ^ , 4 w 3 h 3 i: A ^ W 4 2 W 2 .\ , 4W3A3a = 4 w A — + — — + l + — — — , & = 4 w A — + — — + l + — — —
\ - ' J / 7 \ J . 3 / - >

c=^wh(w2+h2), j =e= /=0 . • (71)

So in the case of a rectangular image plane, the matrix is diagonal, which makes it
particularly easy to compute its inverse. In fact, the matrix is diagonal if the image
plane is symmetrical about the x and y axes. As the extent of the image plane
decreases, however, the matrix M becomes ill conditioned. That is, inaccuracies in
the three integrals (k, I, and m) computed from the observed flow are greatly
magnified. This makes sense since we cannot expect to accurately determine the
component of rotation about the optical axis when observations are confined to a
small cone of directions about the optical axis.

Again, in our numerical implementation of the algorithm the integrals in (67) can
be approximated by sums. The methods discussed in this section have been applied
to noisy synthetic data with the expected results.

5. GENERAL MOTION

Now we would like to apply a least-squares algorithm to determine the motion of
a camera from optical flow given no a priori assumptions about the motion. It is
plain that a least-squares method is easiest to use when the resulting equations are
linear in all the motion parameters. Unfortunately, there exists no norm which will
allow us to achieve this goal. We did find a norm, however, which resulted in
equations that are linear in some of the unknowns and quadratic in the others. We
again attack the minimization problem using the MLyg norm under the constraint
that U2 + V2 + W2 = 1. The ensuing equations are polynomials in the unknowns
U, V, W, A, B, and C and can be solved by a standard iteration method like
Newton's or Bairstow's method [14] or by an interpolation scheme like regula faisi
[14]. The expression we wish to minimize is

/XtHi^Hi^)]2}^^^ (72)

The first step is to differentiate the integrand of (72) with respect to Z and set the
resulting expression equal to zero:

Z=-————^———-. (73)
(« - Oa + (u - v,)^ v /

We introduce the Lagrangian multiplier \ as before and attempt to minimize

f r [(« - u,)H - (c - v,}a\2 dx dy + \(U2 + V2 + W2 - 1). (74)
•'-h-'-w

The equations we have to solve to determine the motion parameters are obtained by
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differentiation,

f F [(« - u,)ft - (v - v,)a][-xyt3 + (y2 + l)a] dxdy = 0
- —h- —w

( h F [(u - u,)ft - (v - v,)a\[(x2 + \)/3 - xya] dxdy = 0
• —h" —w

[ h f [(u - u,)P-(v - v,)a\[yp + xa] dxdy = 0
" —h- —w

{ h r [(u-u,)P- (v-v,)a](v-c,)cixdy+\U=0
•'-h'-w

{ h r [(u - u,)/3 - (v - c,)a](u - u,) dxdy - \V = 0
''-h'-w

{" r [(u - u,)P -(v- v,)a][(u - u,)y + (v - v,)x\dxdy + \W = 0
-—h'—w

U2+V2+W'l= l

(75)

Note that the first three equations are linear in A, B, and C from which these
parameters can be determined uniquely in terms of U, V, and W. Then we can
determine U, V, and W from the last four equations by a numerical method. To this
end, the problem can be discretized and equations analogous to (75) derived, where
summation of the appropriate expressions is used instead of integration.

6. SUMMARY

Our objective was to devise a method for determining the motion of a camera
from optical flow which allows for noise in the measured data. The least-squares
method which we proposed in this paper meets our goal and is also suitable for
numerical implementation. An important application of our results is in passive
navigation. Here the path and instantaneous altitude of a vehicle is to be determined
from information gleaned about the environment without the emission of sampling
radiation from the vehicle.
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