
Section 1.1 Integer Types in Matlab 3

1.1 Integer Types in Matlab
In this section we will introduce the various datatypes available in Matlab

that are used for storing integers. There are two distinct types: one for unsigned
integers, and a second for signed integers. An unsigned integer type is only capable
of storing positive integers (and zero) in a well defined range. Unsigned integer
types are used to store both positive and negative integers (and zero) in a well
defined range.

Each type, signed and unsigned, has different classes that are distinguished by
the number of bytes used for storage. As we shall see, uint8, uint16, uint32,
and uint64 use 8 bits, 16 bits, 32 bits, and 64 bits to store unsigned integers,
respectively. On the other hand, int8, int16, int32, and int64 use 8 bits, 16
bits, 32 bits, and 64 bits to store signed integers, respectively.

Let’s begin with a discussion of the base ten system for representing integers.

Base Ten
Most of us are familiar with base ten arithmetic, simply because that is the
number system we have been using for all of our lives. For example, the number
2345, when expanded in powers of ten, is written as follows.

2345 = 2000 + 300 + 40 + 5
= 2 · 1000 + 3 · 100 + 4 · 10 + 5
= 2 · 103 + 3 · 102 + 4 · 101 + 5 · 100

There is an old-fahsioned algorithm which will allows us to expand the num-
ber 2345 in powers of ten. It involves repeatedly dividing by 10 and listing the
remainders, as shown in Table 1.1.

10 2345
10 234 5
10 23 4
10 2 3
10 0 2

Table 1.1. Determining the coeffi-
cients of the powers of ten.

If you read the remainders in the third coloumn in reverse order (bottom to top),
you capture the coefficients of the expansion in powers of ten, namely the 2, 3, 4,
and 5 in 2 · 103 + 3 · 102 + 4 · 101 + 5 · 100.

Copyrighted material. See: http://msenux.redwoods.edu/Math4Textbook/1

4 Chapter 1 Numeric Types in Matlab

In the case of base ten, the algorithm demonstrated in Table 1.1 is a bit of
overkill. Most folks are not going to have trouble writing 8235 as 8 ·103 +2 ·102 +
3 · 101 + 5 · 100. However, we will find the algorithm demonstrated in Table 1.1
quite useful when we want to express base tens numbers in a different base.

The process is easily reversible. That is, it is a simple matter to expand
a number that is experessed in powers of ten to capture the original base ten
integer.

2 · 103 + 3 · 102 + 4 · 101 + 5 · 100 = 2 · 1000 + 3 · 100 + 4 · 10 + 5
= 2000 + 300 + 40 + 5
= 2345

Base Ten. An integer can be expressed in base ten as

tn · 10n + tn−1 · 10n−1 + · · · + t2 · 102 + t1 · 101 + t0 · 100,

where each of the coefficients tn, tn−1, . . . t1, t1, and t0 are “digits,” i.e., one
of the numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9. Note that the highest possible
coefficient is one less than the base.

However, base ten is not the only possibility. Indeed, we are free to use any
base that we wish. For example, we could use base seven. If we did, then the
number (2316)7 would be interpreted to mean

(2316)7 = 2 · 73 + 3 · 72 + 1 · 71 + 6 · 70.

This is easily expanded and written in base ten.

(2316)7 = 2 · 343 + 3 · 49 + 1 · 7 + 6 · 1
= 686 + 147 + 7 + 6
= 846

Base Seven. An integer can be expressed in base seven as

sn · 7n + sn−1 · 7n−1 + · · · + s2 · 72 + s1 · 71 + s0 · 70,

where each of the coefficients sn, sn−1, . . . s1, s1, and s0 are one of the
numbers 0, 1, 2, 3, 4, 5, or 6. Note that the highest possible coefficient is
one less than the base.

Section 1.1 Integer Types in Matlab 5

Matlab has a useful utility called base2dec for converting numbers in different
bases to base ten. You can learn more about this utility by typing help base2dec
at the Matlab prompt.

>> help base2dec
BASE2DEC Convert base B string to decimal integer.

BASE2DEC(S,B) converts the string number S of base B into
its decimal (base 10) equivalent. B must be an integer
between 2 and 36. S must represent a non-negative integer
value.

Strings in Matlab are delimited with single apostrophes. Therefore, if we wish to
use this utility to change the base seven (2316)7 to base ten, we enter the following
at the Matlab prompt.

>> base2dec(’2316’,7)
ans =

846

Note that this agrees with our hand calculation above.
Hopefully, readers will now intuit that integers can be expressed in terms of

an aribitrary base.

Arbitrary Base. An integer can be expressed in base B as

cn · Bn + cn−1 · Bn−1 + · · · + c2 · B2 + c1 · B1 + c0 · c0,

where each of the coefficients cn, cn−1, . . . c1, c1, and c0 are one of the numbers
0, 1, 2, . . . , B − 1. Note that the highest possible coefficient is one less than
the base.

It is important to note the restriction on the coefficients. If you expand an
integer in powers of 3, the permissible coefficients are 0, 1, and 2. If you expand
an integer in powers of 8, the permissible coefficients are 0, 1, 2, 3, 4, 5, 6, and 7.

Binary Integers
At the most basic level, the fundamental storage unit on a computer is called a
bit. A bit has two states: it is either “on” or it is “off.” The states “on” and
“off” are coded with the integers 1 and 0, respectively. A byte is made up of eight

6 Chapter 1 Numeric Types in Matlab

bits, each of which has one of two states: “on” (1) or “off” (0). Consequently,
computers naturally use base two arithmetic.

As an example, suppose that we have a byte of storage and the state of each
bit is coded as 10001011. The highest ordered bit is “on,” the next three are “off’,
the next one is “on,” followed by an “off,” and finally the last two bits are “on.”
This represents the number (10001011)2, which can be converted to base ten as
follows.

(10001011)2 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

= 128 + 0 + 0 + 0 + 8 + 0 + 2 + 1
= 139

This is easily checked with Matlab’s base2dec utility.

>> base2dec(’10001011’,2)
ans =

139

However, since base two is commonly used when working with computers, Matlab
has a special command for changing base two numbers into base ten numbers
called bin2dec.

>> help bin2dec
BIN2DEC Convert binary string to decimal integer.

X = BIN2DEC(B) interprets the binary string B and returns
in X the equivalent decimal number.

We can use bin2dec to check our conversion of (10001011)2 to a base ten number.

>> bin2dec(’10001011’)
ans =

139

This process is reversible. We can start with the base ten integer 139 and change
it to base two by extracting powers of two. To begin, the highest power of two
contained in 139 is 27 = 128. Subtract 128 to leave a remainder of 11. The highest
power of two contained in 11 is 23 = 8. Subtract 8 from 11 to leave a remainder

Section 1.1 Integer Types in Matlab 7

of 3. The highest power of two contained in 3 is 21 = 2. Subtract 2 from 3 to
leave a remainder of 1. Thus,

139 = 128 + 8 + 2 + 1
= 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20.

Thus, 139 = (10001011)2.
However, this process is somewhat tedious, particularly for larger numbers. We

can use the tabular method (shown previously for powers of ten in Table 1.1),
repeatedly dividing by 2 while listing our remainders in a third column, as shown
in Table 1.2.

2 139
2 69 1
2 34 1
2 17 0
2 8 1
2 4 0
2 2 0
2 1 0
2 0 1

Table 1.2. Determining the coeffi-
cients of the powers of two.

If you read the remainders in the third column of Table 1.2 in reverse order
(bottom to top), you capture the coefficients of the expansion in powers of two,
providing (139)10 = (10001011)2.

Matlab provides a utility called dec2bin for changing base ten integers to
base two.

>> dec2bin(139)
ans =
10001011

Note that this agrees nicely with our tabular result in Table 1.2.

8 Chapter 1 Numeric Types in Matlab

Hexedecimal Integers
As the number of bits used to store integers increases, it becomes painful to deal
with all the zeros and ones. If we use 16 bits, most would find it challenging to
correctly write a binary number such as

(1110001000001111)2.

This number, when expanded in powers of 2, becomes

1 · 215 + 1 · 214 + 1 · 213 + 0 · 212

+ 0 · 211 + 0 · 210 + 1 · 29 + 0 · 28

+ 0 · 27 + 0 · 26 + 0 · 25 + 0 · 24

+ 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20.

This can be rewritten as follows.

(1 · 23 + 1 · 22 + 1 · 21 + 0 · 20) · 212

+ (0 · 23 + 0 · 22 + 1 · 21 + 0 · 20) · 28

+ (0 · 23 + 0 · 22 + 0 · 21 + 0 · 20) · 24

+ (1 · 23 + 1 · 22 + 1 · 21 + 1 · 20.)

(1.1)

This is equivalent to the following expression.

14 · (24)3 + 2 · (24)2 + 0 · (24)1 + 15 · (24)0

Finally, we see that our number can be expanded in powers of 16.

14 · 163 + 2 · 162 + 0 · 161 + 15 · 160. (1.2)

We need to make two points:

1. Because we are expanding in base 16, the coefficients must be selected from
the integers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15, as they are in
the above expansion (the coefficients are 14, 2, 0 and 15).

2. The coeffients 10, 11, 12, 13, 14, and 15 are not single digits.

To take care of the second point, we make the following assignments: A = 10,
B = 11, C = 12, D = 13, E = 14, and F = 15. With these assgignments, we can
rewrite the expression in (1.2) as

E · 163 + 2 · 162 + 0 · 161 + F · 160. (1.3)

In practice, this is written in hexedecimal format as (E20F)16.

Section 1.1 Integer Types in Matlab 9

We can check our result using Matlab utilities. First, use bin2dec to change
(1110001000001111)2 into decimal format.

>> bin2dec(’1110001000001111’)
ans =

57871

Follow this with Matlab’s dec2hex command to find the hexedecimal represen-
tation.

>> dec2hex(57871)
ans =
E20F

Note that this agrees with our hand-crafted result (1.3).
In practice, changing an integer from binary to hexedecimal is not as com-

plicated as it might appear. In (1.1), note how we first started by breaking the
binary integer (1110001000001111)2 into groups of four. Each group of four even-
tually led to a coefficient of a power of 16. Thus, to move faster, simply block the
binary number (1110001000001111)2 into groups of four, starting from the right
end.

(1110001000001111)2 = (1110 − 0010 − 0000 − 1111)2

Now, moving from left to right, 1110 = E, 0010 = 2, 0000 = 0, and 1111 = F , so

(1110 − 0010 − 0000 − 1111)2 = (E20F)16.

Pretty slick!

Unsigned Integers
We will now discuss Matlab’s numeric types for storing unsigned integers. Un-
signed integers are nonnegative. Negative integers are excluded. If you are work-
ing on a project that does not require negative integers, then the unsigned integer
can save storage space.

Let’s start with a storage space of one byte (eight bits), where each bit can
attain one of two states: “on” (1) or “off” (0). A useful analogy is to think of the
odometer in your car. Old fashioned base ten odometers (before digital) consisted
of a sequence of dials, each having the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 imprinted

10 Chapter 1 Numeric Types in Matlab

on them. When your car was brand new, before the wheels even rolled forward
an inch, the dial would read 00000000 (we’re assuming eight dials here). As the
car took to the highway, the dial farthest to the right would rotate through 1 mile
to 00000001, then 2 miles to 00000002, etc., until it reached 9 miles and recorded
00000009. Now, as the car moves through the tenth mile, the far right wheel
rotates and returns to the digit 0 and the second to the last wheel rotates to the
digit 1, providing the number 00000010 on the odometer. This is simply base ten
counting in action.

Now imagine a base two odometer with eight dials, each having the digits
0 and 1 imprinted on them. At the start, the odometer reads 00000000. After
traveling 1 mile, the odometer reads 00000001. At the end of mile 2, the last
wheel must rotate and return to zero, and the second to the last wheel rotates
around to 1, providing 00000010. At the end of mile 3, the last wheel spins again
to 1 providing 00000011. At the end of mile 4, the last wheel must spin back to
zero, the second to last wheel must now spin to zero, and the third to the last
wheel spins to 1, providing 00000100. This is base two counting in action.

The base two odoemter with eight wheels represents one byte, or eight bits.
The smallest possible integer that can be stored in one byte (8 bits) is the integer
(00000000)2, which is equal to the integer zero is base ten. The largest possible
integer that can be stored is (11111111)2, which can be converted to base ten
with the following calculation.

(11111111)2 = 1 · 27 + 1 · 26 + 1 · 25 + 1 · 24 + 1 · 23 + 1 · 22 + 1 · 21 + 1 · 20

= 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1
= 255

This last calculation is a bit painful. To convert (11111111)2 to base ten, let’s be
a little more creative and let the odometer roll through 1 additional mile, arriving
at (100000000)2 (presuming we magically add one more wheel). This number is
easily converted to base ten, as (100000000)2 = 28 = 256. Because the number
(11111111)2 is one less than (100000000)2,

(11111111)2 = 28 − 1 = 256 − 1 = 255,

which is identical to the result calculated above. Of coure, we can use Matlab to
check our result.

>> bin2dec(’11111111’)
ans =

255

Section 1.1 Integer Types in Matlab 11

Thus, with 8 bits (1 byte) of memory, we are able to store unsigned integers
in the range 0 to 255. Matlab has a special datatype, uint8, designed specifically
for this purpose. For example, suppose that we want to store 123 as an unsigned
8-bit integer in the variable x.

>> x=uint8(123)
x =

123

We can obtain information on the variable x with Matlab’s whos command.

>> whos(’x’)
Name Size Bytes Class

x 1x1 1 uint8 array

Note that the size is 1x1, which represents a one-by-one matrix (one row by one
column), so x must be a scalar. Secondly, note that the class is uint8 array
as expected. Finally, note that it takes 1 byte to store the number 123 in the
variable x.

You can determine the maximum and minimum integers that can be stored
using the uint8 datatype with the following commands.

>> intmin(’uint8’)
ans =

0
>> intmax(’uint8’)
ans =

255

Numbers outside this range “saturate.” That is, numbers smaller than 0 are
mapped to zero, numbers larger than 255 are mapped to 255.

12 Chapter 1 Numeric Types in Matlab

>> uint8(273)
ans =

255
>> uint8(-13)
ans =

0

If you know in advance that you won’t need any integers outside uint8’s range
[0, 255], then you can save quite a bit of storage space by using the uint8 datatype
(e.g., in the processing of gray-scale images). However, if you have need of larger
integers, then you will need to use more storage space. Fortunately, Matlab has
three other unsigned integer types, uint16, uint32, and uint64, that can be
used to store larger unsigned integers.

As you might imagine, uint16 uses 16 bits (2 bytes) of memory to store an
unsigned integer. Again, the smallest possible integer that can be stored using
this type is (0000000000000000)2 = 0. On the top end, the largest unsigned
integer that can be stored using this data type is (1111111111111111)2. Again,
you can change this to base ten by noting that (1111111111111111)2 is 1 less than
the binary integer (10000000000000000)2. That is,

(1111111111111111)2 = (10000000000000000) − 1 = 216 − 1 = 65535.

Again, you can check these bounds on the range of uint16 with the following
commands.

>> intmin(’uint16’)
ans =

0
>> intmax(’uint16’)
ans =

65535

Thus, any number in the range [0, 65535] can be stored using uint16.
For example, we can again store the number 123 in x, but this time as an

unsigned 16 bit integer.

>> x=uint16(123)
x =

123

Section 1.1 Integer Types in Matlab 13

On the surface, there doesn’t appear to be any difference. However, the whos
command reveals the difference.

>> whos(’x’)
Name Size Bytes Class

x 1x1 2 uint16 array

Note that this time the class is uint16 array, but more importantly, note that it
now takes two bytes (16 bits) of memory to store the number 123 in the variable
x.

Integers outside the range [0, 65535] again saturate. Integers smaller than zero
are mapped to zero; integers larger than 65535 are mapped to 65535.

>> uint16(-123)
ans =

0
>> uint16(123456)
ans =

65535

Two further datatypes for unsigned integers exist, uint32 and uint64, which
use 32 bits (4 bytes) and 64 bits (8 bytes) to store unsigned integers, respectively.

Signed Integers
You probably noticed the conspicuous absence of negative numbers in our discus-
sion of unsigned integers and the Matlab datatypes uint8, uint16, uint32, and
uint64. We will rectify that situation in this section.

First, let’s discuss Matlab’s signed integer datatype int8, which uses 8 bits
(one byte) to store signed integers. The leftmost bit (most significant bit) is used
to denote the sign of the integer. If this first bit is “on” (1), then the integer is
negative, and if this first bit is “off” (0), then the integer is positive. Consequently,
the largest possible positive integer that can be stored with this strategy is the
binary number (01111111)2. Note that this number is one less than the number
(10000000)2 (recall the analogy of the base two odometer). Thus,

(01111111)2 = (10000000)2 − 1 = 27 − 1 = 127.

This is easily verified with Matlab’s intmax command.

14 Chapter 1 Numeric Types in Matlab

>> intmax(’int8’)
ans =

127

To represent negative numbers with this storage strategy, computers (and
Matlab) use a technique called twos complement to determine a negative integer.
For example, consider the number 7, written in binary.

7 = (00000111)2

To determine how −7 is stored using signed 8 bit arithmetic, we “complement”
each bit, then add 1. When we say that we will “complement each bit,” we mean
that we will replace all zeros with ones and all ones with zeros. Again, complement
each bit of 7 = (00000111)2 then add 1.

−7 = (11111000)2 + (00000001)2 = (11111001)2.

We can verify this result by adding the binary representations of 7 and −7.

10 10 10 10 10 11 11 1
+ 1 1 1 1 1 0 0 1

0 0 0 0 0 0 0 0

This “binary addition” warrants some explanation. First one and one is two,
correct? In binary, (1)2 and (1)2 is (10)2. In the addition above, we will add as
we did in elementary school. We start at the right end, add (1)2 and (1)2, which
is (10)2. We write the zero in the result and “carry” the 1 to the next column. Of
course, this means that in the second to last column we are now adding (0)2, (1)2,
and the “carried” (1)2, which is again (10)2. So, we write the zero in the second to
last column of the answer, then “carry” the 1 to the next column. Proceeding in
this manner, one can see that all the columns will “zero out.” When we finally get
to the first column, the “carried” (1)2 and the (1)2 and (0)2 sum again to (10)2.
We write the zero in the result, but when we try to “carry” the 1, it gets “pushed
off” the left end where there is no further storage space and (poof!) disappears.

Hence,

(00000111)2 + (11111001)2 = (00000000)2.

This makes (11111001)2 the negative of (00000111)2. Hence, (11111001)2 = −7.
If we were using unsigned storage, (11111001)2 would equal 249 in base ten, but
with signed storage, this spot is now reserved for −7.

Section 1.1 Integer Types in Matlab 15

Twos Complement (8 bit). To determine the negative of a integer stored
as a signed 8 bit (one byte) integer, use “twos complement." That is, com-
plement each bit (change zeros to ones and ones to zeros), then add one.

As a second example, consider 127 = (01111111)2. To determine how −127 is
stored as an 8 bit signed integer, complement each bit of 127 = (01111111)2 and
add one. That is,

−127 = (10000000)2 + (00000001)2 = (10000001)2.

Note that if we were using unsigned 8 bit integer storage, (10000001)2 would
represent the next number after 128, namely 129. But in signed 8 bit integer
storage, (10000001)2 represents −127. As a check, note that adding the binary
representations of 127 and −127 produces zero.

10 11 11 11 11 11 11 1
+ 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

Using 8 bit unsigned storage, we can represent the numbers 0 through 255, as
labeled on the top of the number line in Figure 1.1.

0 1 127 128 129 255

0 1 127 −128 −127 −1
Figure 1.1. Unsigned integers on top are mapped to signed integers on the
bottom.

With signed storage, when the binary odometer rolls over from 127 = (01111111)2
to (10000000)2, the leading bit is now “on,” so all numbers from this point will
represent negative integers, as shown below the number line in Figure 1.1.

The mapping of the unsigned integers from 129 to 255 to the signed integers
from −127 to −1 on the number line in Figure 1.1 is best portrayed if we place
the signed and unsigned integers on a circle, as shown in Figure 1.2.

Thus, using signed 8 bit signed integer storage, we can represent any integer
between −128 and 127, including −128 and 127.

Perhaps a simpler argument for the range of signed 8 bit integers can be made
by noting that 8 bits affords space for 28 = 256 integers. If we count the integers
from 0 through 127 inclusive, we find there are 128 integers. Subtracting from 256
tells us that we have room for an additional 128 integers. Note that the negative

16 Chapter 1 Numeric Types in Matlab

254
−2

255

−1

0

0
1

1

2
2

......

126
126

127

127

128

−128
−127

129

−126

130

Figure 1.2. Unsigned integers on the outer rim are
mapped to signed integers on the inner rim.

integers, starting at −1 and ending at −128, are 128 in number. These maximum
and minimum values are easily verified using Matlab.

>> intmin(’int8’)
ans =
-128

>> intmax(’int8’)
ans =

127

As an example, we can store −123 in the variable x using signed 8 bit integer
storage.

>> x=int8(-123)
x =
-123

The whos command reveals the class of the variable x and the amount of memory
required to store −123 in the variable x.

Section 1.1 Integer Types in Matlab 17

>> whos(’x’)
Name Size Bytes Class

x 1x1 1 int8 array

Note that the class is int8 array and one byte is required to store the integer
−123 in x.

Three further datatypes for signed integers exist, int16, int32, and int64.
They allot 16, 32, and 64 bits for signed integer storage, respectively.

18 Chapter 1 Numeric Types in Matlab

1.1 Exercises

In Exercises 1-4, use hand calcula-
tions (and a calculator) to change each
of the numbers in the given base to
base ten. Use Matlab’s base2dec com-
mand to check your answer.

1. (3565)7

2. (2102)3

3. (11111111)2

4. (111011011)2

In Exercises 5-9, use the tabular tech-
nique to change each of the given base
ten integers to base two. Check your
results with Matlab’s dec2bin com-
mand.

5. 127

6. 67

7. 255

8. 256

In Exercises 9-12, use hand calcula-
tions to place each of the given binary
numbers in hexedecimal format. Use
Matlab’s bin2dec and dec2hex com-
mands to check your work.

9. (11110101)2

10. (1110011101011001)2

11. (11111101101010010101111110101100)2

12. (11101101101010010101111110111100)2

In Exercises 13-16, Use the tabular
method demonstrated in Table 1.2
to place each of the given base ten in-
tegers into binary format. Then place
your result in hexidecimal format. Check
your results with Matlab’s dec2bin
and dec2hex commands.

13. 143

14. 509

15. 1007

16. 12315

17. Using hand calculations, deter-
mine the range of the unsigned integer
datatypes uint32 and uint64. Use
Matlab’s intmin and intmax com-
mands to verify your solutions. Store
the number 123 in x, using each datatype,
then use the whos command to de-
termine the class and storage require-
ments for the variable x.

18. Using hand calculations, deter-
mine the range of the signed integer
types int16, int32, and int64. Use
Matlab’s intmin and intmax com-
mands to check your results. Store the
number −123 in x, using each datatype,
then use the whos command to de-
termine the class and storage require-
ments for the variable x.

Section 1.1 Integer Types in Matlab 19

1.1 Answers

1. 1321

3. 255

5. (1111111)2

7. (11111111)2

9. (F5)16

11. (FDA95FAC)16

13. (10001111)2

15. (1111101111)2

17. Range for uin32 is [0, 4294967295].
Range for uint64 is [0, 18446744073709551615].

