Extended Linear Response for Bioanalytical Applications Using Multiple Enzymes

Vladimir Privman, Oleksandr Zavalov, Aleksandr Simonian

aDepartment of Physics, Clarkson University, Potsdam, NY 13699, USA
bMaterials Research and Education Center, Auburn University, Auburn, AL 36849, USA

*Corresponding author: phone (334) 844-4485, e-mail als@auburn.edu

\textbf{SUPPORTING INFORMATION}

Rate Equations

The set of the rate equations which correspond to Equations (3)-(8) is

\begin{align}
\frac{dE_1(t)}{dt} &= -k_1SE_1 + k_2C_1, \\
\frac{dS(t)}{dt} &= -k_1SE_1 - k_3SE_2 - k_4SE_2^a, \\
\frac{dE_2(t)}{dt} &= -k_3SE_2, \\
\frac{dE_2^a(t)}{dt} &= k_3SE_2 - k_4SE_2^a + k_5C_2, \\
\frac{dV(t)}{dt} &= \gamma(k_2C_1 + k_5C_2),
\end{align}

with all the concentrations on the right-hand sides time-dependent, and with $C_1(t) = E_1(0) - E_1(t)$ and $C_2(t) = E_2(0) - E_2(t) - E_2^a(t)$.
Measure of the Linearity of the Response

The root-mean-square deviation of the slope of the response curve from the average slope is proportional to the following quantity,

\[\sqrt{\int_0^{s_{\text{max}}} \left[\frac{dP(S)}{dS} - \frac{P(s_{\text{max}}) - P(0)}{s_{\text{max}}} \right]^2 dS}, \]

(S6)

where the average slope over the input range from 0 to \(s_{\text{max}} \) is

\[\frac{|P(s_{\text{max}}) - P(0)|}{s_{\text{max}}}. \]

(S7)

The measure \(\Delta \) can be defined as the room-mean-squared deviation normalized per the average slope,

\[\Delta = \sqrt{\int_0^{s_{\text{max}}} \left[\frac{dP(S)}{dS} - \frac{P(s_{\text{max}}) - P(0)}{s_{\text{max}}} \right]^2 dS \over \frac{|P(s_{\text{max}}) - P(0)|}{s_{\text{max}}}}. \]

(S8)