
Smith Text: Chapter 14.6
Mentor Graphics Documents:

“Scan and ATPG Process Guide”
“DFTAdvisor Reference Manual”

“Tessent Common Resources Manual for ATPG Products 

Design for Test
Scan Test 



Top-down test design flow

Source: Scan and APTG Process Guide



Sequential circuit testing problem
 Access limited to PIs/POs 
 Internal state is changed 

indirectly
 For N PIs and K state 

variables, must test 2N+K

combinations
 Some states difficult to 

reach, so even more test 
vectors are needed

Combinational
Logic

Flip
flops

PIs POs

State

Clock



Design for Test (DFT)

Flip flop states difficult to set from PIs A & B



DFT: Scan Design

• Flip flops replaced with “scan” flip flops
• Scan flip flops form a shift register in “scan mode”
• Flip flop states set via “scan input” sc_in
• Flip flop states examined via “scan output” sc_out



Scan-based test procedure
 Combinational logic inputs = {X1…Xk,Q1…Qn}

 X1…Xk = primary inputs (PI’s) 
 Q1…Qn = flop-flop outputs

 Combinational logic outputs = {Z1…Zm, D1…Dn}
 Z1…Zm= primary outputs (PO’s) 
 D1…Dn= flop-flop inputs

 Test procedure:
1. Apply pattern to combinational logic inputs:

a) Set scan enable sc_en = 1 and shift pattern into Q1…Qn via scan input sc_in
b) Apply a pattern to PI’s X1…Xk

2. Check combinational logic outputs:
a) Check PO’s Z1…Zm
b) Set sc_en = 0 and clock the circuit to capture D1…Dn in the flip-flops
c) Set sc_en = 1 and shift out Q1…Qn via scan output sc_out for verification



Scan type: mux_scan

BICMOS8HP library “mux_scan” components: 
SDFF_x, SDFFR_x, SDFFS_r, SDFFSR_x, SLATSRLV_x

Replacements for: 
DFF_x, DFFR_x, DFFS_x, DFFSR_x, LATSRLV_x

Standard D flip flop with a mux to select system data vs scan data



Scan type: clocked_scan

Separate clocks to load system data and scan data

BICMOS8HP & ADK libraries:  no “clocked_scan” components 



Scan type: LSSD 
(Level-sensitive scan design – IBM)

BICMOS8HP library: no “lssd” components
ADK library “lssd” components:  

lssd_latch/latchsr/latchr/latchs/latchs_ni/latchsr_ni

Three clocks:   
1. sys_clock loads system data into the master latch (normal mode)
2. Aclk loads scan data into the master latch
3. Bclk captures master data in the slave latch to drive scan output



Full vs. partial scan

Full Scan:
All FFs in scan chains.

Partial Scan:
Some FFs not in scan chains.

Increase testability,
without affecting critical 

timing/areas



Scan chain groups

• Scan chains operate in parallel from separate scan inputs
• Reduces number of clock cycles to load/unload the chain
• Control from one procedure file
• Can use separate clocks or a common clock

Group 1

Group 2



DFT test point insertion 



Choosing a DFT solution



DFTadvisor/FastScan Design Flow

Source: ATPG Manual



DFT test flow and commands

Source: DFTadvisor Reference

DFTAdvisor
Commands

(insert test logic)

FastScan
Commands

(generate patterns)
-verilog



Basic scan 
insertion flow

bicmos8hp.atpg
(adk.atpg)



DFTAdvisor supported test structures

Sequential ATPG-based: choose cells with a sequential ATPG algorithm
SCOAP: Sandia Controllability Observability Analysis Program (#’s for each ff)
Automatic: combine scan selection methods using several techniques
Structure-based: look at loop breaking, limiting sequential depth, etc.
Sequential Transparent: cut all sequential loops and evaluate
Clocked Sequential: cut sequential loops and limit sequential depth



Example DFTadvisor session
 Invoke: 
 dftadvisor modulo6_1.v –lib bicmos8hp.atpg

 Implement scan with defaults (full scan, mux-DFF elements):
 set system mode setup (analyze the circuit)
 analyze control signals                        (find clocks, resets, etc.)
 add clocks 0 CLK (identify CLK off state)
 add clocks 1 CLEARbar (likewise async set/reset)
 set scan type mux_scan (use scan ffs with mux inputs)
 set system mode dft (design for testability)
 run                                                     (identify where to insert scan/test pts)
 insert test logic –scan on                      (insert scan/tp’s into netlist)
 write netlist mod6_scan.v -replace    (Verilog netlist of modified ckt)
 write atpg setup mod6_scan -replace (dofile & test procedure for FastScan)
Options:
 insert test logic –scan on –number 3           (create 3 scan chains)
 insert test logic –scan on –max_length 20   (no scan chain > 20 ffs)



DFT options
 set scan type mux_scan
 Others: lssd, clocked_scan
 Find indicated scan flip flop type in the ATPG library

 setup scan identification “type”, where “type” = 
 full_scan (default)
 sequential atpg –percent 50
 clock_sequential [-depth integer]
 etc.

 insert test logic
 -scan on/off               (insert scan elements; default=on)
 -test_point on/off     (insert test points; default=on)
 - maxlength n             (max scan chain length = n)
 - number n                 (divide ffs into n scan chains)



Modulo-6 counter:  Synthesized by Synopsys DC



Modulo-6 counter:  Converted to full-scan (BICMOS8HP)



count4 – without scan design (TSMC 180nm)



Binary 
counter
(4-bit)

Synthesized by
Leonardo

DFTAdvisor
Changed to
Scan Design



count4 – scan inserted by DFTadvisor



FastScan ATPG session for a circuit 
containing scan chains

 Invoke: 
fastscan count4_scan.v –lib $ADK/technology/adk.atpg

 Generate test pattern file:
 dofile count4_scan.dofile           (defines scan path & procedure)
 set system mode atpg
 create patterns (generate the test patterns)
 save patterns count4_patterns.v –verilog (write patterns & test bench)
 write faults count4_faults.txt     (write fault information to file)
 write procfile count4.proc          (write test procedure & timing data)



count4_scan.dofile
//  Generated by DFTAdvisor at Wed Nov 30 17:01:33 2014
//
// define group “grp1” of scan chains and their test procedure
add scan groups grp1 count4_scan.do.testproc
// define sc_in and sc_out of scan “chain1” in group “grp1” 
add scan chains chain1 grp1 scan_in1 output[3]
// define “clocks” controlling the scan chain
add clocks 0 clear
add clocks 0 clock

Notes:
• Can have multiple scan chains in a group – with a common test procedure
• Can have multiple groups – each with its own test procedure



Test file: scan chain definition and 
load/unload procedures

scan_group "grp1" =
scan_chain "chain1" =

scan_in = "/scan_in1";
scan_out = "/output[3]";
length = 4;

end;
procedure shift "grp1_load_shift" =

force_sci "chain1" 0;
force "/clock" 1 20;
force "/clock" 0 30;
period 40;

end;
procedure shift "grp1_unload_shift" =

measure_sco "chain1" 10;
force "/clock" 1 20;
force "/clock" 0 30;
period 40;

end;

procedure load "grp1_load" =
force "/clear" 0 0;
force "/clock" 0 0;
force "/scan_en" 1 0;
apply "grp1_load_shift" 4 40;

end;
procedure unload "grp1_unload" =

force "/clear" 0 0;
force "/clock" 0 0;
force "/scan_en" 1 0;
apply "grp1_unload_shift" 4 40;

end;
end;

(each shift)

(each shift)

# shifts



Test file: scan chain test
// send one pattern through the scan chain
CHAIN_TEST =

pattern = 0; (pattern #)
apply "grp1_load" 0 =                 (use grp1_load proc.)

chain "chain1" = "0011";         (pattern to scan in) 
end;
apply "grp1_unload" 1 =               (use grp1_unload proc.)

chain "chain1" = "1100"; (expected pattern scanned out)
end;

end;



Test file: sample test pattern
// one of 14 patterns for the counter circuit
pattern = 0;                           (pattern #)

apply "grp1_load" 0 =          (load scan chain)
chain "chain1" = "1000";  (scan-in pattern)

end;
force   "PI" "00110" 1;          (apply PI pattern)
measure "PO" "0010" 2;        (expected POs)
pulse "/clock" 3;                   (one normal op. cycle)
apply "grp1_unload" 4 =       (read scan chain)

chain "chain1" = "0110";  (expected pattern)
end;



Alternate format
set time scale 1.000000 ns ; 
timeplate gen_tp1 =

force_pi 0 ;            (1)

measure_po 10 ;    (2)

pulse clock 20 10;  (3)

period 40 ;              (4)

end; 
procedure shift =    

scan_group grp1 ;    
timeplate gen_tp1 ;    
cycle = 

force_sci ;        
measure_sco ;        
pulse clock ;    

end; 
end; 

procedure load_unload =
scan_group grp1 ;     
timeplate gen_tp1 ;    
cycle =

force clear 0 ; 
force clock 0 ; 
force scan_en 1 ; 

end ;
apply shift 4; 

end;

Timing of op’s within each cycle

Initial
values

Execute shift
proc. 4 times

Each
shift 
cycle

0     10      20          30    40

(1)   (2)
(3)

(4)

clock



DFTAdvisor example (Chao Han)
//dofile for dftadvisor
analyze control signals -auto_fix
set scan type mux_scan
set system mode dft
setup scan identification full_scan
run
//specify # scan chains to create
insert test logic -scan on -number 3
//alternative: specify maximum scan chain length
//insert test logic -scan on -max_length 30 
write netlist s1423_scan.v -verilog -replace
//write dofile and procedure file for fastscan
write atpg setup s1423_scan -procfile -replace
exit


	Design for Test�Scan Test 
	Top-down test design flow
	Sequential circuit testing problem
	Design for Test (DFT)
	DFT: Scan Design
	Scan-based test procedure
	Scan type: mux_scan
	Scan type: clocked_scan
	Scan type: LSSD �(Level-sensitive scan design – IBM)
	Full vs. partial scan
	Scan chain groups
	DFT test point insertion 
	Choosing a DFT solution
	DFTadvisor/FastScan Design Flow
	DFT test flow and commands
	Basic scan insertion flow
	DFTAdvisor supported test structures
	Example DFTadvisor session
	DFT options
	Slide Number 20
	Slide Number 21
	count4 – without scan design (TSMC 180nm)
	Slide Number 23
	count4 – scan inserted by DFTadvisor
	FastScan ATPG session for a circuit containing scan chains
	count4_scan.dofile
	Test file: scan chain definition and load/unload procedures
	Test file: scan chain test
	Test file: sample test pattern
	Alternate format
	DFTAdvisor example (Chao Han)

