Functional IC test with the ADVANTEST T2000 GS system

VLSI Design & Test Seminar Victor P. Nelson 1/15/2014

Presentation outline

- IC testing process
- Tester architecture
- Device test fixture
- Test plan design
- Creation of test vectors
- Running tests

IC testing process

For each test vector:

- 1. Apply test vector to DUT input pins
- 2. Activate clock
- 3. Sample DUT outputs
- 4. Compare sampled to expected outputs

ADVANTEST T2000 GS Test System

T2000 GS computing architecture

Test instrument modules (up to 12 in T2000 GS test head)

250MDMA pattern generator and frame processor

Driver pin electronics

ltem		250MDMA Specification Value			
Veltere venre	VIH	-1.15 ~ +7.0V			
vonage range	VIL	-1.25~+5.9V			
Voltage amplitude	$0.1 V \sim 8.0 V$				
Voltage resolution		2mV			
Turuniting time	20% ~ 80%	1.2nS @ 3V			
I ransmon time	20% ~ 80%	1nS @ 1V			
Minimum nulse midth	50%	4.0nS @ 3V			
Minimum puise width	50%	2.5nS @ 1V			
Duivou minimum on timo	Hi-Z	10.0nS			
Driver minimum on time	VTT	5.0			
Driver minimum off time	Hi-Z	10.0nS			
Driver minimum off time	VTT	5.0nS			

Comparator specifications

Item		250MDMA Specification Value	
Voltage range		VOH	-1.25 ~ +6.75V
		VOL	-1.25V ~ +6.75V
Minimum voltage (VOH-VOL)		0.0V	
Voltage resolution		2mV	
Equivalent transition time		: 20% ~ 80%	2.4ns @ 3V
		: 20% ∼ 80%	2.0ns @ 1V
Window strobe minimum on time			4.0ns
Window strobe minimum off time			4.0ns
Window strobe minimum glitch detection			4.0ns

Timing generator

Item	250MDMA Specification value
Number of timing edges	6 timing edges per pin (4drive / 2compare)
Number of waveforms	32
TS scrambler	256
Timing edge setting range	$0s \sim 1ms$ $0ns \sim (4cycles - 4ns)$
Timing edge resolution	7.8125ps
Edge shift	Not Available
Long-range timing	Exists

Auburn T2000 performance board

Performance board IC sockets

Configuring DUT signal/power pins

Xilinx Spartan 3 FPGA daughter board mounted on the PB

TSS (T2000 System Software) Structure

Test Plan

- *Test plan* = test program written by test engineer.
 - Defines the test flow (sequence of test steps)
 - Executes on the Site Controller
 - SC controls the modules to test the device
 - Written in OTPL
 - Open Architecture Test Programming Language
 - Uses framework classes
 - Test, Level, Timing, DCParametrics, User-supplied
 - Configures hardware via standard interfaces
 - test plans interact with common test system hardware components and other test-related objects.

T2000 control panel (t2kctrl start – from a DOS window)

- GUI to load/unload test plans
- Open other tools:

🏧 Test Control Panel - [Production Mode: OFF; Simulation Mode: Full] 🔳 🗖 🗙
File View Setup Command ExecFlow Tools Help
🎽 🗛 🧊 🎝 🚵 🕨 🔳 II 🖒 II
LOADED DUTs: 1
Plan File: C:\T2000Install\UserSDK\examples\OAI\SimpleTPL\OTPLSrc\testplan.tpl
User TPL Env: _
-
STPL File: -
PlanName: testplan
SysC: Ready Loading Unloading Testing Error Canceled
SiteCs: Ready Loading Unloading Testing Error Suspended Canceled Alarm
Cal Expiration Info: -

Loading the test plan

From Control Panel, select: File > Load Test Plan

🔲 TestPlan Loa	ding 🛛 🔀	
Test Plan		
Plan File:	C:\T2000Install\UserSDK\examples\OAI\SimpleTPL\OTPLSrc\testplan.tpl	
Sub TestPlan List:		
File search algorith	nm: Not Set Find First Find Latest Extended 	
Socket:	C:\T2000Install\UserSDK\examples\OAI\SimpleTPL\TestPlans\socket.soc	
User TPL Env:	C:\T2000Install\cfg\OAI\defaults\OASISTPL.env <	—Environment
Default TPL Env:	C:\T2000Install\/cfg/OAI/defaults/OASISTPL.env	file
Light simulation r	node	
Response data:		
Reuse loaded pati	tern	
	TestPlan Dependencies OK Cancel	

Test Control Panel

Icon	Description
•	Shortcut to Command -> Start
	Shortcut to Command -> Stop
Ш	Shortcut to Command -> Suspend
5	Shortcut to Command -> Reset
	Shortcut to Command -> Continue

Flow editor

Control and/or edit the main test flow

OPTL Test Plan Structure

OTPL test plan directory structure

/MyTestPlanFiles – create for each "project"

/OTPLOutput – compiler output

- /OTLPSrc test plan source code
- /Patterns test pattern source files
- /Plist pattern list files
- /TestClasses class DLL files
- /TestPlans compiled test plan and pin/socket files

Example – 74LS393 dual 4-bit binary counter (14-pin DIP package)

74LS393 "pin description file" (.pin)

DUT pin names and pin groups for timing domains & patterns (OTPL requires strict formatting)

	🖌 as groups in t	the test plan			
Version 1.0.0;	Group inpins1				
PinDescription	{	DomainGroup DefaultDG			
{	A1, A2	{			
Resource AT.Digital.dpin	}	default			
{	Group inpins2	}			
A1;	{	}			
CLR1;	CLR1, CLR2				
QA1;	}	Resource dps500mA			
QB1;	Group outpins1	{ Power			
QC1;	{	VDD; supply			
QD1;	QA1, QB1, QC1, QD1	}			
A2;	}				
CLR2;	Group outpins2	Resource moduletrigger			
QA2;	{	{			
QB2;	QA2, QB2, QC2, QD2	PMDTR0;			
QC2;	}	PMDTR1;			
QD2;	Domain default	PMDTR2;			
•	{	PMDTR3;			
1	allpins	}			
All individual pipe	}	}			
All mulvidual pills					

74LS393 "socket file" (.soc)

Tell test plan which DUT pins connected to which module channels

```
Version 1.0.0;
                                                        Resource dps500mA
SocketDef
                                                                           DPS500ma
                                                           VDD 1010.2;
 DUTType DiagPB
                                                                           connector:
                                                                             1010.1...32
   PinDescription pindesc.pin;
                                                        Resource moduletrigger
   DUT 1
                                                           PMDTR0 1003.129;
     SiteController 1;
                                                           PMDTR1 1003.130;
     Resource AT.Digital.dpin
                                                           PMDTR2 2003.131;
                                                           PMDTR3 2003.132;
       A1
            1003.1;
                           250MDMA
       CLR1 1003.2;
                           connectors:
                                                      }
       QA1
            1003.3;
                             1003.1..64
       QB1 1003.4;
       QC1 1003.5;
                             2003.1..64
            1003.6;
       QD1
       QD2 1003.58;
                           connector.channel
       QC2
            1003.59;
       QB2
            1003.60;
                        Connector 1003 -> left 64-pin ZIF socket & 48-pin ZIF socket
       QA2 1003.61;
                        Connector 2003 -> right 64-pin ZIF socket
       CLR2 1003.62;
       A2
            1003.63;
```

74LS393 device "specification file" (.spec) Voltage/current specifications (from device data sheet) Value chosen from multiple options by a selector

Version 1.0;

ł

}

Import uservar.usrv;

SpecificationSet functional_Specs(min, typ, max)

- Select min/typ/max for test condition

Voltage vforce = 4.75V, 5V, 5.25V; Current ich = 20mA, 100mA, 200mA; Current icl = -400mA, -1600mA, -2400mA; VoltageSlew slewrate = 78.125; Voltage vih = 5V; Voltage vih = 5V; Voltage vil = 0V; Voltage voh = 2.5V, 3.4V, 3.4V; Voltage vol = 0.35V, 0.35V, 0.5V; From DUT * Drive DU * Thresho

From DUT perspective:

- * Drive DUT inputs to vih/vil
- * Threshold for DUT outputs = voh/vol

Levels file (.lvl)

Voltages/currents for DUT signal pin groups, Force voltages for DUT power supply pin groups.

versi	on 1.0;			
Impo	rt pindesc.pin;			
# pin	desc.pin declares names:	inp	bins	
#	VDD, inpins, outpins	{		
# res	ource.rsc declares names:		VIH = vih;	Driver
#	VSRange, VForce, Relay, VIH, etc.		VIL = vil;	voltages
Level	s Lvl1		PinOutRelay = CLOSE;	defined
{		_	PowerSequence = ON;	in spec file
	VDD	}		
	{			
	VSRange = 7V			
	voltange – 7 v,	OU [.]	tpins	
	VForce = vforce;	ou [.] {	tpins	
	VForce = vforce; DpsRelay = CLOSE;	ou [.] {	VOH = voh:	Reference
	VForce = vforce; DpsRelay = CLOSE; PowerSequence = ON;	ou [.] {	VOH = voh;	Reference
	VForce = vforce; DpsRelay = CLOSE; PowerSequence = ON; }	ou [.] {	VOH = voh; VOL = vol;	Reference voltages
	VForce = vforce; DpsRelay = CLOSE; PowerSequence = ON; } Delay 3mS;	ou: {	tpins VOH = voh; VOL = vol; PinOutRelay = CLOSE;	Reference voltages defined
	VForce = vforce; DpsRelay = CLOSE; PowerSequence = ON; } Delay 3mS;	ou: {	VOH = voh; VOL = vol; PinOutRelay = CLOSE; PowerSequence = ON;	Reference voltages defined in spec file
	VForce = vforce; DpsRelay = CLOSE; PowerSequence = ON; } Delay 3mS;	ou: { }	VOH = voh; VOL = vol; PinOutRelay = CLOSE; PowerSequence = ON;	Reference voltages defined in spec file
	VForce = vforce; DpsRelay = CLOSE; PowerSequence = ON; } Delay 3mS;	ou: { }	VOH = voh; VOL = vol; PinOutRelay = CLOSE; PowerSequence = ON;	Reference voltages defined in spec file

Test pattern timing – for each test vector

May define different timing patterns for different pins and/or test steps.

Timing file (.tim)

Define timing of input transitions and sample times

PeriodTable #Cycle time "rate0" for test freq = 5MHz Period rate0 { 200nS; } #Sample times for device outputs #Force times for device inputs **Pin OUTPINS** Pin INPCONTROL_PINS Edge WaveformTable out WaveformTable inpctrl { H { H@85nS,E5; } } { L { L@85nS,E6; } { 1 { U@0nS; } } { X { Z@0nS; } } $\{ 0 \{ D@0nS; \} \}$ Test pattern Sample Sample Up/Down Transition Test pattern Symbols High/Low TIme **Symbols** TIme

Timing file example

Test engineer wanted to repeat tests for different periods.

Timing map file (.tmap)

Combine individual pin & rate timings into DUT "timing sets"

Test condition group file (.tcg) Combine: specification set + levels + timing (one set of test conditions)

Version 1.0; Import timing.tim; Import timingmap.tmap; Import level.lvl; Import DiagPBSpec.spec;

A Levels-Only Test Condition Group.

```
TestConditionGroup DiagPBTCG_300_to_290
```

```
SpecificationSet DiagPBSpec; #from .spec file
Levels Lvl1; #from .lvl file
Calibration CalBlock1; #from .tim file
Timings
{
    Timing = Tim_300_to_290; #from .tim file
    TimingMap = TMap1; #from .tmap file
}
```

{

Pattern files

(pin order taken from .pin file)

```
Waveform set for timing
    Vector
                                Sample
               Apply
NOP { V { inpins=0111; outpins=LLLLLLL; } W {allpins=wfs1;}}
NOP { V { inpins=0100; outpins=LLHLHHLL; } }
NOP { V { inpins=0110; outpins=LLHLHLL; } }
NOP { V { inpins=0110; outpins=HHLLLLH; } }
 ....
NOP { V { inpins=0111; outpins=LLLLLLL; } W {allpins=wfs2;}}
NOP { V { inpins=0100; outpins=LLLLLLL; } }
NOP { V { inpins=0110; outpins=LLLLLLL; } }
NOP { V { inpins=0110; outpins=LLLLLLL; } }
NOP { V { inpins=0111; outpins=LLLLLLL; } }
NOP { V { inpins=0111; outpins=LLLLLLL; } W {allpins=wfs3;}}
NOP { V { inpins=0100; outpins=LLLLLLL; } }
NOP { V { inpins=0110; outpins=LLLLLLL; } }
        Sequencing instruction
```

Functional test vectors may be created from simulation results

Vectors extracted from functional simulation

(to be translated to T2000 pattern format)

	Α	В	Fct	S	Ck1	Ck2	F	Fb	01	02
	Ο	0	2	в	1	1	0	0	1	1
	Ο	1	2	В	1	1	0	0	1	1
Each vector:	0	2	2	В	1	1	0	0	1	1
	Ο	3	2	В	1	1	Ο	0	1	1
Inputs (A B Ect)	0	4	2	В	1	1	Ο	0	1	1
	0	5	2	в	1	1	0	0	1	1
to be applied at	Ο	6	2	В	1	1	Ο	0	1	1
start of cycle	0	7	2	В	1	1	0	0	1	1
,	Ο	8	2	В	1	1	0	0	1	1
	0	9	2	В	1	1	Ο	0	1	1
Clocks (Ck1,Ck2)	Ο	A	2	В	1	1	Ο	0	1	1
1 => pulse during	0	в	2	В	1	1	Ο	0	1	1
cycle	0	С	2	В	1	1	0	0	1	1
cycic	Ο	D	2	В	1	1	Ο	0	1	1
	0	Ε	2	В	1	1	Ο	0	1	1
Outputs (S,F,Fb)	Ο	F	2	В	1	1	Ο	0	1	1
to be sampled at	1	0	2	В	1	1	0	0	1	1
	1	1	2	В	1	1	1	1	3	3
end of cycle	1	2	2	в	1	1	Ο	Ο	1	1

Fastscan ATPG - ASCII test file (to be converted to T2000 test patterns)

```
SETUP =
   TEST_CYCLE_WIDTH = 1;
   DECLARE INPUT BUS "ibus" = "/AO", "/A1", "/A2", "/A3",
                      "/BO", "/B1", "/B2", "/B3",
                      "/M", "/S3", "/S2", "/S1",
                      "/SO", "/C'n";
   DECLARE OUTPUT BUS "obus 1" = "/A=B", "/C'n+4", "/FO", "/F1",
                      "/F2", "/F3", "/X", "/Y";
END:
CYCLE TEST =
 PATTERN = 0;
   CYCLE = 0;
   FORCE "ibus" "10001100001101" 0;
                                             Test patterns
   MEASURE "obus 1" "01101100" 1;
 PATTERN = 1;
   CYCLE = 0;
   FORCE "ibus" "00011000011010" 0;
   MEASURE "obus 1" "00010011" 1;
 PATTERN = 2;
   CYCLE = 0;
   FORCE "ibus" "00110000110100" 0;
   MEASURE "obus 1" "00000001" 1;
```

Test plan (.tpl)

Specify test conditions and test flow

Version 1.0;

Import OTPL sources & pre-headers

Import testcondition.tcg; Import asicbins.bdefs; Import DatalogSetupTest.ph; Import FunctionalTest.ph;

Import Runtime files
Import pindesc.pin;

PListDefs

{

}

Pattern lists for this test plan (file:object)
pattern.plist:DiagPBPat

SocketDef, UserVars declaration as before ...
SocketDef = socket.soc;

#-----

Start of the test plan #------

Name of the TestPlan
TestPlan testplan;

The type of DUT
DUTType "DiagPB";

Test plan (continued)

```
# Declare conditions for tests: TC1Min, TC1Typ, TC1Max, TC2Min, TC2Typ, etc
TestCondition TC 300 to 290
ł
     TestConditionGroup = DiagPBTCG 300 to 290;
                                                         Use "typical" values
     Selector = typ;
                                                         from this group
}
# ....Other TestConditions
# Declare a "FunctionalTest", which refers to a C++ test class that runs the test
# and returns a 0, 1 or 2 as a result.
Test FunctionalTest DiagPBFunctionalTest 300 to 290
{
                                                      Pattern list for this test
     PListParam = DiagPBPat;

    Conditions for this test

     TestConditionParam = TC 300 to 290;
}
# ....Other functional tests
```

Test plan (continued)

(define the test flow)

FlowMain is the main flow.

DUTFlow FlowMain

```
{ # First flow to be executed:
```

```
DUTFlowItem DatalogSetupFlow DatalogSetup
     Result 0 {
          Property PassFail = "Pass";
          GoTo FlowMain_300_to_290;
DUTFlowItem FlowMain_300_to_290 DiagPBFunctionalTest_300_to_290
ſ
     Result 0 {
          Property PassFail = "Pass";
          IncrementCounters PassCount;
          GoTo FlowMain 290 to 280;
     Result 1
          Property PassFail = "Fail";
          IncrementCounters FailCount;
          SetBin SoftBins.FailCache3GHz;
          Return 1;
```

Test plan example – FPGA (1) power up, (2) configure FPGA, (3) test the circuit

```
# Define the three functional "tests"
Test FunctionalTest Functional_power_typ
       ## Test Description = "Functional Test for typ values";
        PListParam = powerup;
                                                                         Power up the FPGA
        TestConditionParam = TC_typpower;
        DebugMode = 0;
Test FunctionalTest Functional_dpins_typ
      ## Test Description = "Functional Test for DPINS typ for FPGA configuration";
     PListParam = fpgaconfigpat:
                                                                         Download bit file
     TestConditionParam = TC_typdpins;
                                                                         to the FPGA
     DebugMode = 0;
Test FunctionalTest Funct test
      { ## Test Description = "Functional Test post configuration";
                                                                         Test the configured
      PListParam = testpat;
                                                                         FPGA
      TestConditionParam = TC_typtest;
      DebugMode = 0;
```

FPGA Test Plan (continued)

(Define the test flow)

DUTFlowItem FlowMain_Func_power_typ Functional_power_typ

```
Result 0 {
               Property PassFail = "Pass";
               GoTo FlowMain_Func_dpins_typ;
                                                                              Power up the FPGA
             Result 1 {
                Return 1;
DUTFlowItem FlowMain_Func_dpins_typ Functional_dpins_typ
             Result 0 {
               Property PassFail = "Pass";
               GoTo Flowmain_functional_test;
                                                                              Download bit file
                                                                              to the FPGA
             Result 1 {
               Return 1;
DUTFlowItem Flowmain_functional_test Funct_test
             Result 0 {
                   Return 0;
                                                                              Test the configured
                                                                              FPGA
             Result 1
                   Return 1;
January 15, 2014
                                             VLSI D&T Seminar - Nelson
```

Other test options (Students might want to try these)

- Scan-based testing
- DC Parametric Test
 - Per-pin parametric measurement unit
- IDD tests
- SHMOO plots
 - Modify variables over a range and plot #pass/fail vec's
- Complex timing (ex. double data rate)
- Binning (hard and soft)
 - Control handler to move failed parts to bins