
Automated Synthesis from
HDL models

Design Compiler (Synopsys)
Leonardo (Mentor Graphics)

Front-End Design & Verification

Create Behavioral/RTL
HDL Model(s)

Simulate to Verify
Functionality

Synthesize
Circuit

Synopsys Design Compiler
Cadence RTL Compiler
Leonardo Spectrum
Xilinx/Altera (FPGA)

ModelSim
(digital)

VHDL-AMS
Verilog-A

ADVance MS
(analog/mixed signal)

VHDL
Verilog

SystemC

Technology
Libraries

Technology-Specific Netlist
to Back-End Tools

Simulate to Verify
Function/Timing

VITAL
Library

Design Constraints

Automated synthesis

Synopsys Design Compiler
Cadence RTL Compiler

Leonardo Spectrum

HDL Behavioral/RTL Models (VHDL/Verilog)

FPGA

ASIC

Technology
Synthesis
Libraries

Technology-
Specific
Netlist

Design
Constraints

Verilog, VHDL,
SDF, EDIF,

Area/delay/power reports

Leonardo:
Level 1 – FPGA
Level 2 – FPGA + Timing
Level 3 – FPGA + ASIC

or ASIC only

Modules

Ex: Synopsys
“Designware”

Synopsys Design Compiler Documents
Documents (pdf) located on Linux server in

/class/ELEC6250/Synopsys_Docs/
 DC User Guide
 DC Command Line
 DC Synthesis Quickref
 DC Ref Constraints and Timing
 DC Ref Timing Optimization
 DesignVisionTutorial
 DesignVision User Guide

Project directory structure

/CADProjects

/MyHomeDirectory

/Project1 /Project2 /work /adk*

/src /syn /sim /schematic /layout

VHDL/Verilog
library

std cell
library

.vhd

.v
Synthesis scripts,
logs, reports,
design database,
netlists (.v, .vhd)
sdf, sdc, pow files

.do files,
simulation
results

Physical
layout files

Invoking Design Compiler
 Interactive shell version:
 dc_shell –f scriptFile
 Most efficient and common usage is to put TCL

commands into scriptFile, including “quit” at the end
 TCL = Tool Command Language

 Edit and rerun scriptFile as needed

 GUI version (Design Vision)
 design_vision
 From dc_shell: gui_start
 Main advantage over dc_shell is to view the synthesized

schematic

Synthesis stages
and commands

Load tech libraries
into database

Read, analyze &
elaborate design

Define design
environment
parameters

Specify design
rules/contraints

Compile &
optimize design
(repeat as
necessary)

Generate netlist
and reports

Synopsys Design Compiler flow

ASIC synthesis flow**

** Mentor Graphics
“Leonardo” - similar
to Synopsys
“Design Compiler”

Design Compiler library files
 target_library : standard cell database (binary)
 cell area/pins/timing data (for synthesis decisions)

 synthetic_library: Synopsys DesignWare components
 link_library : use during linking
 Includes target and link library plus internal data (*)

 symbol_library : schematic symbols
 Synopsys installation includes a generic symbol

library

 Define in file .synopsys_dc.setup

DC User Guide
Chapter 4

Setup file (8HP): .synopsys_dc.setup

set MyHome [getenv "HOME"]
set SynopsysInstall [getenv "STROOT"]
set CMOS8HP "/class/ELEC6250/cmos8hp/std_cell/v.20130404“
set search_path [list \

[format "%s%s" $CMOS8HP /synopsys/typ_v150_t025] \
[format "%s%s" $CMOS8HP /symbols/synopsys] \
[format "%s%s" $SynopsysInstall /libraries/syn] \
[format "%s%s" $SynopsysInstall /dw/sim_ver] \
[format "%s%s" $SynopsysInstall /dw]]

set target_library [list PnomV1p50T025_STD_CELL_8HP_12T.db]
set synthetic_library [list dw_foundation.sldb]
set link_library [list "*" $target_library $synthetic_library]
set symbol_library [list generic.sdb]

DC reads .synopsys_dc.setup files in order:
1. Synopsys installation directory (all user projects)
2. User home directory (all projects for this user)
3. Current project directory (this project only)

Synopsys DesignWare Package

 Predesigned components (tech-independent)
 arithmetic, filters, CRC gen’s, counters, decoders, FIFOs, flip-

flop RAMs, etc.

 Let DC choose a component, or instantiate directly
 components chosen to implement arithmetic operators

 Example DW decrementer:
module decrementer (in_A, SUM_out);

parameter width = 8;
input [width-1 : 0] in_A;
output [width-1 : 0] SUM_out;
DW01_dec #(width) U1(.A(in_A), .SUM(SUM_out));

endmodule;

Load design into the database
 Analyze – syntax check and build database
 input VHDL and/or Verilog models
 check dependencies & resolve generics/parameters

 Elaborate – synthesize to generic gates and black boxes
 technology-independent gates
 operators (arithmetic, relational, etc.) recognized and

implemented with “black boxes” (no logic in them yet)

 Read command does analyze + elaborate + pre-optimize

DC User Guide
Chapter 5

Analyze Command
 analyze {f1.v src/f2.v “top file.v”}

 Read and analyze into default memory database library “work”
 List HDL files in bottom-up order – top level last
 Use quotes if embedded spaces in file name: “top file.v”
 Include directory if necessary: src/f2.v

 Analyze command switches:
 -format verilog (or vhdl) [default VHDL if file ext = .vhd/.vhdl or

Verilog if file ext = .v/.verilog]
 -work lib_name [lib where design to be stored (default = “work”.)

Different libraries might be used for comparing designs]

 Examples:
 analyze {src/f1.v src/f2.vhd} (store in “work”)
 analyze {src/f1.v src/f2.vhd} –work lib_version2

Elaborate Command
 “Elaborate” a design currently in the memory database –

producing tech-independent circuit
 elaborate divider [“divider” = VHDL entity/Verilog module]

 Switches
 -single_level [only do top level – for bottom-up design]
 -architecture a1 [if other than most recently analyzed]
 -work lib_name [if name other than work]
 -generics { size=9 use_this=TRUE initval=“10011” }
 List format is { generic=value generic=value …. }

 -parameters [format same as generics]

Example script
#Design-specific information – create variables for use in commands
set myFiles [list ./src/top.v ./src/Muxbig.v]
set basenameTOP
set fileFormat verilog
define_design_libWORK –path ./syn

#Design-independent: these commands need not be changed
analyze –format $fileFormat -lib WORK $myFiles
elaborate $basename –lib WORK –update
current_design $basename
link (link all design parts)

uniquify (make unique copies of replicated modules)

Unique for each
design -
not necessary,
but convenient
for multiple projects

Commands
using above
design
information

Read command
 Performs both analyze and elaborate steps
 Useful for single HDL file:

read_file –f verilog filename.v

 Same switches as analyze and elaborate commands,
plus (optional):

-dont_elaborate {f1.vhd} – do analysis but not elaborate

Design environment
 Technology variables affect delay calculations
 Manufacturing process, temperature, voltage, fanouts, loads,

drives, wireload models
 Defaults specified in the technology library
 8HP technology libraries on next slide

 Design environment variables can be set
 Use tech library defaults if variables not set

 set voltage 2.5 (volts)
 set temp 40 (degrees celsius/centigrade)
 set process 1 (process variation # – if available)

DC User Guide
Chapter 6

Available 8HP technology files
 Located in: $CMOS8HP/synopsys/
 Each file contains data for each library cell for a specific

operating voltage and temperature
Directory / Technology File

typ_v120_t025 / PnomV1p20T025_STD_CELL_8HP_12T.db
typ_v150_t025 / PnomV1p50T025_STD_CELL_8HP_12T.db
fast_v132_tm40 / PbcV1p32Tm40_STD_CELL_8HP_12T.db
fast_v132_tm55 / PbcV1p32Tm55_STD_CELL_8HP_12T.db
fast_v160_tm40 / PbcV1p60Tm40_STD_CELL_8HP_12T.db
fast_v160_tm55 / PbcV1p60Tm55_STD_CELL_8HP_12T.db
slow_v108_t125 / PwcV1p08T125_STD_CELL_8HP_12T.db
slow_v140_t125 / PwcV1p40T125_STD_CELL_8HP_12T.db

Design environment variables/commands

BUFF

“drive” strength =
1/R of output driver
(default 0)

Transition delay=
Rdriver*Cinput

“load” = capacitive load
(units from tech library)
(default 0)

“fanout_load” = #units
(associated with input pins)

Example: define drive characteristics

• current_design top_level_design (define external input drives)
• set_drive 1.5 {I1 I2} (resistance units from library)
• current_cell sub_design2 (define input drivers for U2)
• set_driving_cell –lib_cell IV {I3} (default pin = IV output)
• set_driving_cell –lib_cell AN2 –pin Z –from_pin B {I4}

(arc from AN2 gate input B to output Z)
• set_fanout_load 4 {out1 out2} (#fanout units for output pins)

Wire Load Table (not available for 8HP)
 Estimate effects of wire length & fanout on resistance,

capacitance and area of net
 Affects switching times/delays
 Precise delays known only after place and route
 Function of cell sizes, fanouts, wire characteristics

 Wire Load Table may be provided by vendor
 Determined from analysis of previous process runs

 Variables:
 wire_load_library name

(lib to which designed mapped - or NIL)
 wire_table name (if named table loaded)
 wire_tree (best,balanced,worst, or not set)
 wire_load_mode (top, segmented)

Setting design constraints
 Design rule constraints: rules from library vendor for

proper functioning of the fabricated circuit
 Must not be violated
 Common constraints: transition time, fanout load, capacitance

 Design optimization constraints: user-specified timing
and area optimization goals
 DC tries to optimize these without violating design rules
 Common constraints: timing and area

DC User Guide
Chapter 7

Design rule constraints
 max_fanout = max #loads a net can drive
 Input pins have fanout_load attribute.

(load they place on driving nets)
 Output pins have max_fanout attribute.

(max load they can drive)
Example: Pin N drives loads A and B

• Pin A has fanout_load value 2.0
• Pin B has fanout_load value 3.0
• Pin N requires max_fanout ≥ 5.0 to drive A and B

Otherwise, use different cell or insert a buffer to drive the net.

 Change max_fanout attribute to restrict it more than its default value
set_max_fanout 5 [object_list] (object_list is list of ports)

 Other design rule constraints:
• max_transition (output pins): transition time to change logic values
• max_capacitance (output pins): sum of net and pin capacitances driven by output

N
A

B

Design optimization constraints
 Speed
 path delays (min,max)
 clock specifications (period/frequency/duty)

 Area
 speed is primary goal
 optimize area if timing constraints met
 target area 0 forces small as possible
 set_max_area 2000

 Choose realistic constraints (within 1-10%)
 avoid extra buffers/gates on loaded nets

Timing path types

Path delays of interest
1. Combinational: primary input to primary output (in2 -> out2)
2. Primary input to register input (in1 -> FF1/D1)
3. Clock/register output to primary output (clk -> Q2 -> out1)
4. Clock/register output to register input (clk -> Q1 -> D2)

Timing Constraints
 Simple: specify target clock frequency
 Advanced: specify globally or on specific blocks
 Clock: period/frequency, pulse width, duty cycle
 Input: arrival time, transition times, driver strength
 Output: required time, transition times

required time – arrival time = “slack”

Clock specifications
 Define required period/waveform for each clock
 create_clock ckname –period 5
 create_clock ckname –period 5 –waveform {2 4}

 period=5, rise at 2, fall at 4

 DC does not automatically imply clock signals
 create_clock –name ckname –period 5

 creates a “virtual clock” associated with a port/pin

 Clock latency = delay through clock network
 set_clock_latency 2.1 –rise CLK1
 set_clock_latency 0.7 –source CLK1

 from clock origin to clock pin

 Clock uncertainty = margin of error to allow variances
 set_clock_uncertainty –setup 0.2 CLK1
 set_clock_uncertainty –hold 0.2 CLK1

Add 0.2 margin on either side
of clock edge to account for
variances in clock network

Clock constraint examples

create_clock clk –period 40

create_clock clk
–period 40 {0, 15}

Input and output delays

 Delay from clock edge through “external” logic to an
input port or internal pin.
 set_input_delay 2.3 {in1 in2}
 default input delay = 0

 Time a signal is required at output port by external
destination before a clock edge
 external circuit logic delay + external ff setup time
 set_output_delay 7 –clock CLK1 [all_outputs]
 default output delay = 0

• Arrival time from previous ckt to input pin, relative to clock.
- attribute: input_delay (default is 0)
- command: set_input_delay 3 –clock clk dpin

Input_delay 3 { data}

Input constraints

Block A input available
3 time units after clock
transition

Need Logic Cloud A delay +
FF2 setup time ≤ 7

• Time from clock to valid output at pin, to be used by external ckt
- attribute: output_delay
– command: set_output_delay 7 –clock CLK d1

output_delay 7 d1

d1

Output constraints

External Circuit

Example: Clock cycle = 20
External ckt flip-flop setup time = 2
External ckt logic cloud (LC B) delay = 11
Output at d1 needed by 20 – (11 + 2) = 7

D

clk

LC
B

Sequential circuit example

create_clock -period 20 -waveform {5 15} clka
create_clock -period 30 -waveform {10 25} clkb
set_input_delay 10.4 -clock clka in1
set_input_delay 6.4 -clock clkb -add_delay in1
set_output_delay 1.6 -clock clka -min out1
set_output_delay 4.8 -clock clka -max out1

Arrival at input pin from
previous clock edge
Setup time of output pin
from next clock edge

Required clock periods

Path-based commands

 Path startpoint = input pin or register clock pin

 Path endpoint =output pin or register data pin

 Path constraint
set_max_delay –from from-list –to to-list value

 to/from-list = port, pin, clock or cell names
 If clock in from-list: all paths affected by that clock
 If clock in to-list: all related register data pins
 Register data pin: FF1 or FF1/D
 Can specify –rise and/or –fall times
 Can add –through P to capture paths passing through P
 Can specify [all_outputs] or [all_inputs]

Path delay examples

 Max delay requirements
 set_max_delay 10 -to out1 –from Reset
 set_max_delay 5.1 –from {ff1 ff2} -to {o1 o2}
 set_max_delay 3 –from busA[*] –to u1/Z
 set_max_delay 6 –to [all_outputs]

 If no “from list”, constrain paths from all start points

 set_max_delay 8 –from [all_inputs]
 If no “to list”, constrain paths to all end points

 Above also applies to: set_min_delay

Compiling the design

 Compile (and optimize) the design
 compile –map_effort $mapEffort1

 design hierarchy preserved
 map_effort = medium(default) or high

 compile –ungroup_all –map_effort $mapEffort1
 design “flattened” (ungrouped – all levels collapsed)

 compile –incremental_mapping –map_effort $mapEffort2
 work on it some more – incremental improvements

 High-effort compile
 compile_ultra
 use on high-performance designs, tight time constraints
 specify –no_autoungroup to preserve hierarchy

DC User Guide
Chapter 8

Synthesis Output Files
 Design.v – verilog structural netlist
 change_names –rules verilog
 write –format verilog –output file.v

 Design.sdf – standard delay file for timing simulation
 write_sdf –version 1.0 file.sdf

 Design.rep – synthesis report (timing, area, etc)
 redirect file.rep {report_timing}
 redirect –append file.rep {report_area –hier }

 Design.ddc – Synopsys database format (to view in DV)
 write –format ddc –hierarchy -o file.ddc

 Design.sdc – constraints for Encounter place/route
 write_sdc file.sdc

 Design.pow – power estimate
 redirect file.pow { report_power }

More timing options on
next slide.

Additional timing report options
report_timing

-to {list of signals} Inputs/flipflop outputs to these signals
-from {list of signals} Flip-flop outputs/inputs to these signals
-through {list of pins} Paths that go through these pins
-max_paths N Number of paths to report
-loops {timing loops} Timing loops (comb. logic feedback)

Balancing Loads
 Resolve load violations throughout the design
 Fix loads after changing attributes, without rerunning optimize

 Load balancing always done as part of optimize

 Pays attention to OUTPUT_LOADS, OUTPUT_FANOUTS

 Mostly used at boundaries of hierarchical modules
 Optimize balances loads within modules

 Command:
balance_loads [design-name] [-single]

DesignVision
window

Modulo7 counter in DesignVision

	Automated Synthesis from HDL models
	Front-End Design & Verification
	Automated synthesis
	Synopsys Design Compiler Documents
	Project directory structure
	Invoking Design Compiler
	Slide Number 7
	Synopsys Design Compiler flow
	ASIC synthesis flow**
	Design Compiler library files
	Setup file (8HP): .synopsys_dc.setup
	Synopsys DesignWare Package
	Load design into the database
	Analyze Command
	Elaborate Command
	Example script
	Read command
	Design environment
	Available 8HP technology files
	Design environment variables/commands
	Example: define drive characteristics
	Wire Load Table (not available for 8HP)
	Setting design constraints
	Design rule constraints
	Design optimization constraints
	Timing path types
	Timing Constraints
	Clock specifications
	Clock constraint examples
	Input and output delays
	Input constraints
	Output constraints
	Sequential circuit example
	Path-based commands
	Path delay examples
	Compiling the design
	Synthesis Output Files
	Additional timing report options
	Balancing Loads
	DesignVision window
	Modulo7 counter in DesignVision

