
VHDL/Verilog Simulation

Testbench Design

The Test Bench Concept

Elements of a VHDL/Verilog testbench
 Unit Under Test (UUT) – or Device Under Test (DUT)
 instantiate one or more UUT’s

 Stimulus of UUT inputs
 algorithmic
 from arrays
 from files

 Verification of UUT outputs
 assertions
 log results in a file

Testbench concepts
 No external inputs/outputs for the testbench module/entity
 All test signals generated/captured within the testbench

 Instantiate the UUT (Unit Under Test) in the testbench
 Generate and apply stimuli to the UUT
 Set initial signal states (Verilog: “Initial block”, VHDL “process”)
 Generate clocks (Verilog “Always block”, VHDL process)
 Create sequence of signal changes (always block/process)

 Specify delays between signal changes
 May also wait for designated signal events

 UUT outputs compared to expected values by “if” statements
(“assert” statements in VHDL)
 Print messages to indicate errors
 May decide to stop the simulation on a “fatal” error

Instantiating the UUT (Verilog)
// 32 bit adder testbench
// The adder module must be in the working library.
module adder_bench (); // no top-level I/O ports

reg [31:0] A,B; // variables to drive adder inputs
wire [31:0] Sum; // nets driven by the adder

adder UUT (.A(A), .B(B), .Sum(Sum)); //instantiate the adder

//generate test values for A and B and verify Sum
….

Instantiating the UUT (VHDL)
-- 32 bit adder testbench
entity adder_bench is -- no top-level I/O ports
end adder_bench;
architecture test of adder_bench is
component adder is -- declare the UUT
port (

X,Y: in std_logic_vector(31 downto 0);
Z: out std_logic_vector(31 downto 0)

);
signal A,B,Sum: std_logic_vector(31 downto 0); --internal signals
begin
UUT: adder port map (A,B,Sum); --instantiate the adder

Algorithmic stimulus generation (Verilog)
// Generate test values for an 8-bit adder inputs A & B
integer ia, ib;
initial begin

for (ia = 0; ia <= 255; ia = ia + 1) // 256 addend values
for (ib = 0; ib <= 255; ib = ib + 1) // 256 augend values

begin
A = ia; // apply ia to adder input A
B = ib; // apply ib to adder input B
#10; // delay until addition expected to be finished
if ((ia+ib)%256 !== Sum) // expected sum

$display(“ERROR: A=%b B=%B Sum=%b”, A,B,Sum);
end

end

Algorithmic generation of stimulus (VHDL)
-- Generate test values for an 8-bit adder inputs A & B
process begin

for m in 0 to 255 loop -- 256 addend values
A <= std_logic_vector(to_UNSIGNED(m,8)); -- apply m to A
for n in 0 to 255 loop -- 256 augend values

B <= std_logic_vector(to_UNSIGNED(n,8)); -- apply n to B
wait for T ns; -- allow time for addition
assert (to_integer(UNSIGNED(Sum)) = (m + n)) – expected sum

report “Incorrect sum”
severity NOTE;

end loop; end loop;
end process;

adder

A B

Sum

Verilog: Check UUT outputs
// IF statement checks for incorrect condition
if (A !== (B + C)) // we are expecting A = B+C

$display(“ERROR: A=%b B=%B C=%b”, A, B, C);

 $display prints to the transcript window
 Format similar to “printf” in C (new line is automatic)
 Include simulation time by printing the $time variable

$display(“Time = “, $time, “A = “, A, “B = “, B, “C = “, C);
 $monitor prints a line for each parameter change.

initial
$monitor(“Time=“, $time, “A = “, A, “B = “, B, “C = “, C);

“Initial block” to write a line for each A/B/C change.
(Often redundant to simulator List window)

VHDL: Check results with “assertions”
-- Assert statement checks for expected condition
assert (A = (B + C)) -- expect A = B+C (any boolean condition)

report “Error message”
severity NOTE;

 Match data types for A, B, C
 Print “Error message” if assert condition FALSE

(condition is not what we expected)
 Specify one of four severity levels:

NOTE, WARNING, ERROR, FAILURE
 Simulator allows selection of severity level to halt simulation
 ERROR generally should stop simulation
 NOTE generally should not stop simulation

Stimulating clock inputs (Verilog)

reg clk; // clock variable to be driven

initial //set initial state of the clock signal
clk <= 0;

always //generate 50% duty cycle clock
#HalfPeriod clk <= ~clk; //toggle every half period

always //generate clock with period T1+T2
begin

#T1 clk <= ~clk; //wait for time T1 and then toggle
#T2 clk <= ~clk; //wait for time T2 and then toggle

end

Stimulating clock inputs (VHDL)
-- Simple 50% duty cycle clock
clk <= not clk after T ns; -- T is constant or defined earlier

-- Clock process, using “wait” to suspend for T1/T2
process begin

clk <= ‘1’; wait for T1 ns; -- clk high for T1 ns
clk <= ‘0’; wait for T2 ns; -- clk low for T2 ns

end process;

-- Alternate format for clock waveform
process begin

clk <= ‘1’ after LT, ‘0’ after LT + HT;
wait for LT + HT;

end process;
LT

HT

T1
T2

Sync patterns with clock transitions

A <= ‘0’; -- schedule pattern to be applied to input A
B <= ‘1’; -- schedule pattern to be applied to input B
wait for T1; -- time for A & B to propagate to flip flop inputs
Clock <= ‘1’; -- activate the flip-flop clock
wait for T2; -- time for output C to settle
assert C = ‘0’ -- verify that output C is the expected value

report “Error in output C”
severity ERROR;

wait for T3; -- wait until time for next test period

Clock

Apply
inputs A,B

Active
clock

transition

Test period

T1

Check
output C

T2 T3

Sync patterns with various signals

-- Test 4x4 bit multiplier algorithm
process begin
for m in 0 to 15 loop;

A <= std_logic_vector(to_UNSIGNED(m,4)); -- apply multiplier
for n in 0 to 15 loop;

B <= std_logic_vector(to_UNSIGNED(n,4)); -- apply multiplicand
wait until CLK’EVENT and CLK = ‘1’; -- clock in A & B
wait for 1 ns; -- move next change past clock edge
Start <= ‘1’, ‘0’ after 20 ns; -- pulse Start signal
wait until Done = ‘1’; -- wait for Done to signal end of multiply
wait until CLK’EVENT and CLK = ‘1’; -- finish last clock
assert P = (A * B) report “Error” severity WARNING; -- check product

end loop;
end loop;

end process;

Done

Start

Apply A,B Pulse Start Check Result
When Done

Sync patterns with clock transitions

always #5 clock = ~clock; //toggle every 5ns
initial begin

clock = 0; latch = 0; dec = 0; in = 4’b0010; //time 0
#11 latch = 1; //time 11
#10 latch = 0; //time 21
#10 dec = 1; //time 31
#10 if (zero == 1’b1) $display(“Count error in Z flag); //time 41
#10 if (zero == 1’b0) $display(“Count error in Z flag); //time 51

clock

latch

dec
count

zero

2 1 0

11 21 31

5 10 15 20 25 30 35 40 45 50 55 60

41
51

4-bit binary
down-counter
with load15

Sync patterns with clock transitions

A <= ‘0’; -- schedule pattern to be applied to input A
B <= ‘1’; -- schedule pattern to be applied to input B
wait for T1; -- time for A & B to propagate to flip flop inputs
Clock <= ‘1’; -- activate the flip-flop clock
wait for T2; -- time for output C to settle
assert C = ‘0’ -- verify that output C is the expected value

report “Error in output C”
severity ERROR;

wait for T3; -- wait until time for next test period

Clock

Apply
inputs A,B

Active
clock

transition

Test period

T1

Check
output C

T2 T3

Sync patterns with various signals

-- Test 4x4 bit multiplier algorithm
process begin
for m in 0 to 15 loop;

A <= std_logic_vector(to_UNSIGNED(m,4)); -- apply multiplier
for n in 0 to 15 loop;

B <= std_logic_vector(to_UNSIGNED(n,4)); -- apply multiplicand
wait until CLK’EVENT and CLK = ‘1’; -- clock in A & B
wait for 1 ns; -- move next change past clock edge
Start <= ‘1’, ‘0’ after 20 ns; -- pulse Start signal
wait until Done = ‘1’; -- wait for Done to signal end of multiply
wait until CLK’EVENT and CLK = ‘1’; -- finish last clock
assert P = (A * B) report “Error” severity WARNING; -- check product

end loop;
end loop;

end process;

Done

Start

Apply A,B Pulse Start Check Result
When Done

Testbench for a modulo-7 counter
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY modulo7_bench is end modulo7_bench;

ARCHITECTURE test of modulo7_bench is
component modulo7
PORT (reset,count,load,clk: in std_logic;

I: in std_logic_vector(2 downto 0);
Q: out std_logic_vector(2 downto 0));

end component;
for all: modulo7 use entity work.modulo7(Behave);
signal clk : STD_LOGIC := '0';
signal res, cnt, ld: STD_LOGIC;
signal din, qout: std_logic_vector(2 downto 0);

begin
-- instantiate the component to be tested
UUT: modulo7 port map(res,cnt,ld,clk,din,qout);

Alternative
to “do” file

Continue on
next slide

Testbench: modulo7_bench.vhd

clk <= not clk after 10 ns;

P1: process
variable qint: UNSIGNED(2 downto 0);
variable i: integer;

begin
qint := "000";
din <= "101"; res <= '1';
cnt <= '0'; ld <= '0';
wait for 10 ns;
res <= '0'; --activate reset for 10ns
wait for 10 ns;
assert UNSIGNED(qout) = qint

report "ERROR Q not 000"
severity WARNING;

res <= '1'; --deactivate reset
wait for 5 ns; --hold after reset
ld <= '1'; --enable load
wait until clk'event and clk = '1';

qint := UNSIGNED(din); --loaded value
wait for 5 ns; --hold after load
ld <= '0'; --disable load
cnt <= '1'; --enable count
for i in 0 to 20 loop

wait until clk'event and clk = '1';
assert UNSIGNED(qout) = qint

report "ERROR Q not Q+1"
severity WARNING;

if (qint = "110") then
qint := "000"; --roll over

else
qint := qint + "001"; --increment

end if;
end loop;

end process;

Print message if incorrect result

qint = expected outputs of UUT

0 10 20 30

Apply
inputs Trigger

counter

Check output
before next

change

5

Advanced testbench concepts
 Detect time constraint violations
 Define and apply test vectors from an array
 Define and apply test vectors from a file
 Memory testbench design

Checking setup/hold time constraints

-- Figure 8-6 in the Roth textbook
check: process
begin

wait until (clk’event and CLK = ‘1’);
assert (D’stable(setup_time))

report “Setup time violation”
severity ERROR;

wait for hold_time;
assert (D’stable(hold_time))

report “Hold time violation”
severity ERROR;

end process check;

D

CLK

Q

Qb

tsetup

thold
CLK

D should be “stable” for tsetup prior to the clock edge
and remain stable until thold following the clock edge.

-- Setup time Tsu for flip flop D input before rising clock edge is 2ns
assert not (CK’stable and (CK = ‘1’) and not D’stable(2ns))

report “Setup violation: D not stable for 2ns before CK”;
-- DeMorgan equivalent
assert CK’stable or (CK = ‘0’) or D’stable(2ns)

report “Setup violation: D not stable for 2ns before CK”;

Test vectors from an array (VHDL)
type vectors is array (1 to N) of std_logic_vector(7 downto 0);

signal V: vectors := -- initialize vector array
(
"00001100 “, -- pattern 1
"00001001“, -- pattern 2
"00110100", -- pattern 3
. . . .

"00111100“ -- pattern N
);

begin
process
begin

for i in 0 to N loop
A <= V(i); -- set A to ith vector

Verilog does not provide for “parameter arrays”.
Arrays would need to be loaded one vector at a time in an “initial block”.

Reading test vectors from files
use std.textio.all; -- Contains file/text support
architecture m1 of bench is begin

signal Vec: std_logic_vector(7 downto 0); -- test vector
process

file P: text open read_mode is "testvecs"; -- test vector file
variable LN: line; -- temp variable for file read
variable LB: bit_vector(31 downto 0); -- for read function

begin
while not endfile(P) loop -- Read vectors from data file

readline(P, LN); -- Read one line of the file (type “line”)
read(LN, LB); -- Get bit_vector from line
Vec <= to_stdlogicvector(LB); --Vec is std_logic_vector

end loop; end process;

Sync patterns with clock transitions

A <= ‘0’; -- schedule pattern to be applied to input A
B <= ‘1’; -- schedule pattern to be applied to input B
wait for T1; -- time for A & B to propagate to flip flop inputs
Clock <= ‘1’; -- activate the flip-flop clock
wait for T2; -- time for output C to settle
assert C = ‘0’ -- verify that output C is the expected value

report “Error in output C”
severity ERROR;

wait for T3; -- wait until time for next test period

Clock

Apply
inputs A,B

Active
clock

transition

Test period

T1

Check
output C

T2 T3

Memory testbench design
 Basic testbench operation:
 Step 1: Write data patterns to each address in the memory
 Step 2: Read each memory address and verify that the data

read from the memory matches what was written in Step 1.
 Step 3: Repeat Steps 1 and 2 for different sets of data

patterns.

Memory read and write timing

ADDR

DATIN

ADDR

DATAOUT

Write Operation Read Operation

RW RW

1. Apply patterns to ADDR and DATAIN
2. After a short delay, pulse RW (low)
3. Data captured in memory on rising

edge of RW – should also be on DATAOUT

1. Apply patterns to ADDR
2. Leave RW high (for read)
3. DATAOUT from memory

after a short delay

ADDR
DATAIN
RW

DATAOUT

Memory testbench process general format
process begin

RW <= ‘1’; -- default level for RW
-- Write data to all N memory locations (k = # address bits)
for A in 0 to N loop

ADDR <= std_logic_vector(to_unsigned(A,k)); -- convert A to ADDR type
DATAIN <= next_data; -- data to be written to address A
RW <= ‘0’ after T1 ns, ‘1’ after T2 ns; -- pulse RW from 1-0-1
wait for T3 ns; -- wait until after RW returns to 1

end loop;
-- Read data from all N memory locations and verify that data matches what was written
for A in 0 to N loop

ADDR <= std_logic_vector(to_unsigned(A,k)); -- convert A to ADDR type
wait for T4 ns; -- allow memory time to read and provide data
assert DATAOUT = expected_data -- did we read expected data?

report “Unexpected data”
severity WARNING;

end loop;
end process;

We need some method for determining data patterns to be written.

Memory testbench input/output files

Input file format:
w 0 10000000
w 1 00100001
w 2 00000000
w 3 00000000
r 0
r 1
r 2
r 3
e 0

Output file format:
w 0 10000000 10000000
w 1 00100001 00100001
w 2 00000000 00000000
w 3 00000000 00000000
r 0 00000001
r 1 00100001
r 2 10100100
r 3 00000110

We can provide a sequences of operations, addresses, and data from a text file,
and write testbench results to another text file, using the VHDL textio package.

Operation Address Data
Black: Command from input file
Green: Data read on DOUT

Data read on DOUT

Operations are write (w), read (r), and end (e).

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use STD.TEXTIO.all; -- package with routines for reading/writing files

entity TEST is
end entity;

architecture RTL of TEST is
signal RW: std_logic; -- read/write control to MUT
signal ADD: std_logic_vector(1 downto 0); -- address to MUT
signal DIN,DOUT: std_logic_vector(7 downto 0); -- data to/from MUT
signal STOP: std_logic := ‘0’; -- stop reading vector file at end
component Memry is

port (RW: in std_logic;
ADDR: in std_logic_vector(1 downto 0);
DATIN: in std_logic_vector(7 downto 0);
DATO: out std_logic_vector(7 downto 0));

end component;
begin
MUT: Memry port map (RW, ADD, DIN, DOUT); -- instantiate memory component

-- main process for test bench to read/write files
process

file SCRIPT: TEXT is in "mut.vec"; -- “file pointer” to input vector file
file RESULT: TEXT is out "mut.out"; -- “file pointer” to output results file
variable L: line; -- variable to store contents of line to/from files
variable OP: character; -- operation variable (read/write/end)
variable AD: integer; -- address variable
variable DAT: bit_vector(7 downto 0); -- variable for data transfer to/from files

begin
if (STOP = ‘0’) then

RW <= '1'; -- set RW to read
READLINE(SCRIPT,L); -- read a line from the input file
READ(L,OP); -- read the operation from the line
READ(L,AD); -- read the address from the line
ADD <= std_logic_vector(to_unsigned(AD,2); -- apply address to memory

(next slides for read and write operations)

-- Memory write operation
if (OP = 'w') then

READ(L,DAT); -- read data from the input line
DIN <= to_std_logic_vector(DAT);
RW <= '1‘, ‘0’ after 10 ns, ‘1’ after 20 ns; -- pulse RW 0 for 10 ns
wait for 30 ns;
WRITE(L,OP); -- write operation to output line
WRITE(L,' '); -- write a space to output line
WRITE(L,AD); -- write address to output line
WRITE(L,' '); -- write a space to output line
WRITE(L,DAT); -- writes input data to output line
DAT := to_bitvector(DOUT); -- DOUT should match DAT written
WRITE(L,' '); -- write a space to output line
WRITE(L,DAT); -- write DAT to output line
WRITELINE(RESULT,L); -- write output line to output file

-- Memory read operation
elsif (OP = 'r') then

wait for 10 ns; -- wait for 10 ns to read
DAT := to_bitvector(DOUT);-- convert DOUT to BIT_VECTOR
WRITE(L,OP); -- write operation to output line
WRITE(L,' '); -- write a space to output line
WRITE(L,AD); -- write address to output line
WRITE(L,' '); -- write a space to output line
WRITE(L,DAT); -- write DAT to output line
WRITELINE(RESULT,L); -- write output line to output file

-- Stop operation
else

STOP <= ‘1’; -- stop read/write of files when ‘e’ encountered
wait for 10 ns; -- wait for 10 ns to read

end if;
end if;

end process;
end architecture;

	VHDL/Verilog Simulation
	The Test Bench Concept
	Elements of a VHDL/Verilog testbench
	Testbench concepts
	Instantiating the UUT (Verilog)
	Instantiating the UUT (VHDL)
	Algorithmic stimulus generation (Verilog)
	Algorithmic generation of stimulus (VHDL)
	Verilog: Check UUT outputs
	VHDL: Check results with “assertions”
	Stimulating clock inputs (Verilog)
	Stimulating clock inputs (VHDL)
	Sync patterns with clock transitions
	Sync patterns with various signals
	Sync patterns with clock transitions
	Sync patterns with clock transitions
	Sync patterns with various signals
	Testbench for a modulo-7 counter
	Testbench: modulo7_bench.vhd
	Advanced testbench concepts
	Checking setup/hold time constraints
	Test vectors from an array (VHDL)
	Reading test vectors from files
	Sync patterns with clock transitions
	Memory testbench design
	Memory read and write timing
	Memory testbench process general format
	Memory testbench input/output files
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32

