ASIC Physical Design Top-Level Chip Layout

References:

- M. Smith, Application Specific Integrated Circuits, Chap. 16
- Cadence Virtuoso User Manual

Top-level IC design process

- Typically done before individual circuit block layouts
 - Top-level netlists usually created before any layout
- Create top-level schematic
 - "Components" are functional blocks and I/O pads
 - Blocks include IP and user-created modules
- Create a chip "floor plan" from the schematic
 - Place functional blocks and I/O pads
 - Connections shown as overflows
- Route top-level connections (automatic or interactive)
- Eliminate overflows, DRC errors, shorts
- Create layouts of user-designed modules

Modulo-7 counter in pad frame

Floorplanning (Smith text chap. 15, 16)

- Floorplanning: arrange major blocks prior to detailed layout to optimize chip area
 - input is a **netlist of circuit blocks** (hierarchical)
 - after system "partitioning" into multiple ICs
 - estimate layout areas, shapes, etc.
 - Flexible blocks shape can be changed
 - Fixed block shape/size fixed
 - do initial placement of blocks (keep highly-connected blocks close)
 - decide location of I/O pads, power, clock

Floorplan a cell-based IC (Fig. 16.6)

- may have to fit into "die cavity" in a package

Congestion analysis (Fig. 16.7)

Routing a T junction

Define channel routing order

- Make "cuts" (slice in two) to separate blocks
- •Slicing tree, corresponding to sequence of cuts, determines routing order for channels
 - route in inverse order of cuts

Non-slicing structure

Cyclic constraint prevents channel routing

Cannot find slicing floorplan without increasing chip area

Slicing floorplan possible, but inefficient in use of chip area

Power distribution

Uses special power pads, wires, routing

Option a: m1 for VSS m2 for VDD

layers

Potential problems in routing channel

Many layer changes/vias if VDD/VSS on different

Clock distribution (minimize skew)

MOSIS SCMOS Pad Library

- Includes 6 pad types:
 - Input & output pads with buffers
 - VDD & GND pads with ESD
 - Analog IO pad with ESD
 - Analog reference pad with ESD
- Assemble into a "frame" in which pads butt against each other
 - Allows VDD & GND wires to form a continuous ring
 - Special "spacer" and "corner" pads complete the ring
- ADK tools will generate a pad frame from a schematic

MOSIS TSMC 0.35um Hi-ESD Pad Frame

(I) lambda=0.30um

MOSIS
TSMC 0.35um
Hi-ESD
Pad Frame

Physical layout

Corner pad (passes VDD/GND)

MOSIS I/O Pad Schematic

Simplified pad circuit

ENABLE = O (ENABLE - har = 1)	ENABLE = 1	_a
0, 46	P3 on - (x)= 0= out => Inverted by 91/90	>
Of on - pulls to you => P7 off	O4 off	, C.
90 of - pulls & to CND => 08 off	TO SEC.	
96 00 - 6413 0 10 513 28 61	O6 oft	11/10/05/01

MOSIS 1.6 um bidirectional pad

Source: Weste, "CMOS VLSI Design"

To Core

FIG 12.23 MOSIS 1.6 µm bidirectional pad. Color version on inside front cover.

ASIC frame + core in Virtuoso

Process:

- 1. Create "core" block
- 2. Create pad frame
- 3. Connect them

Copyright (c) 2005, 2010, Carlossy Design Systems, Inc. All rights one resolvent devide. Regards dwith parameters.)

Figure 12.22: Frame and core after routing in Virtuoso

Top-level bottom-up design process

- Generate block layouts and for <u>each block</u>:
 - Import the GDSII (or DEF) stream into a Virtuoso library
 - Import the Verilog netlist into the library
 - Perform DRC and LVS on each block until "clean"
 - Create a schematic symbol from the netlist in the library
- Create a block diagram/schematic in Virtuoso "Composer"
 - Create a library for the top-level circuit block and create a schematic view
 - Instantiate schematic symbols from the library
 - Interconnect with nets and add pins
 - Check and save
- Create a layout from the schematic diagram

Top-level block schematic in "Composer"

Copyright (5/2005, 2010, Codence Design Systems, Inc. All rights manned wondwide. Reprint dwith particulous 3

Figure 12.1: Starting schematic showing the three connected modules

Before module and I/O placement

outside

boundary

Virtuosoff XI. Layout Editing: icchest testme layout Y: 715.65 Dist: Tools Design Window Create Edit Verify Connectivity Options Place Routing Assura Compact Blocks initially nouse L: showtlickInfo() V: leitiNousePopUp() %:hiZogeAbsoluteScale(hi@etGurrent

Copyright ⊕ 2005, 2010, Chale see Design Systems, Inc. All rights married work dwindwide. Reprint dwith parasitation)

Figure 12.3: Initial layout before module and I/O placement

After placing modules and pins

Clayright (\$200), 2010, Calesco Design Systems, Inc. All rights meaned workfields. Reprinted with permission.)

Figure 12.4: A placement of modules and IO pins with unrouted nets turned on

Power routing between blocks

Figure 12.5: Layout showing placement and power routing before routing

Nets shown as "overflows"

Figure 12.7: Initial coar window

Routed circuit block

Copyright (\$2004, 2010, Codesco Disago Systems, Inc. All rights merved workfeiths. Reprinted with permission.)

Figure 12.10: Final routed circuit (shown in Virtuoso window)

Block symbol (to connect to I/O pads)

(Copyright (C) 2004, 2010, Cash nor Design Systems, Inc. All rights are ned worldwide. Reprint dwith permission.)

Figure 12.11: Symbol for the Three Blocks example core

Pad frame with signal wires

Copyright (\$20%, 2010, Colonce Draign Systems, Inc. All rights reserved worldwide. Reprinted with permission.)

Figure 12.12: Pad frame with signal wires

Zoomed view of pad frame

Copyright (c) 2005, 2010, Cadence Design Systems, Inc. All rights was re-diversified. Reprint divide personnes.)

Figure 12.13: Pad frame with signal wires (zoomed view)

Schematic: block + pad frame

Copyright (g. 2015, 2011, Cultural Design Systems, Inc. All rights on the deventionine. Reprint dwith permission 3

Figure 12.14: Frame and core components connected together

Placement of frame and core

Copyright (\$,20%, 2010, Calesco Draigs Systems, Inc. All rights married workly bla. Reprised with permission.)

Figure 12.19: Frame and core placed in Virtuoso-XL

Power/ground routed manually

Figure 12.20: Frame and core placed in Virtuoso-XL with vdd and gnd routing completed

Before signal routing

Copyrigit (g) 2005, 2010, Cubrace Draign Systems, Inc. All rights moved worshville. Reprinted with permission, 1

Figure 12.21: Frame and core before routing in ccar

After routing – final layout

Copyright (c) 2005, 2010, Carbona Classico Systems, Inc. All rights are resolved devide. Reprise (with personnes)

Figure 12.22: Frame and core after routing in Virtuoso