
 Test Bench

C. E. Stroud, ECE Dept., Auburn Univ. 1 3/11

A test bench is usually a simulation-only model used for design verification of some other
model(s) to be synthesized. A test bench is usually easier to develop than a force file when
verifying the proper operation of a complicated model. In its simplest form, a test bench
generates and applies input stimuli to the model under test. The test bench can call the model
under test (MUT) hierarchically, as illustrated in Figure 1a, or it can be a separate model with
another top level hierarchical model calling and interconnecting both the test bench and the
MUT, as illustrated in Figure 1b. It is a bad idea to merge the test bench and MUT in a single
non-hierarchical model since editing the model to remove test bench destroys the design
verification effort by opening the door for design errors. A more sophisticated approach is to
have the test bench monitor the outputs of the MUT and to compare the output responses with
expected results for design verification as illustrated in Figure 1c. With the latter approach, the
input stimuli can be modified based on the output response of the MUT.

The test bench is typically not synthesizable since it must often contain timing information
(delays) that cannot be synthesized into hardware (while the MUT contains no timing
information other than delta delays). There are two types of delays that can be used, inertial
delay and transport delay, with the formats given below. The effect of these two types of delays
can be seen in the timing diagram of Figure 2.

X <= A after 5 ns; -- inertial delay acts as a filter removes pulses less that 5ns
Y <= transport A after 5 ns; -- transport delay passes all pulses

Top Level Model

Test
Bench MUT

Test Bench

MUT

Figure 1. Test Bench Hierarchy

a) Test bench as top level model b) Test bench as subcircuit within
higher level model

Top Level Model

c) Test bench performing design
verification

MUT Test
Bench

Time (ns)
0 5 10 15 20

A

X

Y

Figure 2. Timing Diagram for Delays

 Test Bench

C. E. Stroud, ECE Dept., Auburn Univ. 2 3/11

A simple test bench that will apply a set of test patterns to a MUT is given below where we are
generating a BCD count sequence along with a clock signal to be applied to the MUT:

entity TB is
 port (CK: buffer bit;
 BCD: out bit_vector(3 downto 0));
end entity TB;
architecture RTL of TB is
signal INIT: bit;
begin
CK <= not CK after 50 ns; -- repetitive patterns
BCD <= “0000”, “0001” after 100ns, “0010” after 200 ns, “0011” after 300 ns,

“0100” after 400 ns, “0101” after 500 ns, “0110” after 600 ns,
“0111” after 700 ns, “1000” after 800 ns, “1001” after 900 ns;

end architecture RTL;

A more sophisticated test bench is given below where the control of the input stimuli to the MUT
is read from an input file (mut.vec) while the output responses from the MUT are written to an
output file (mut.out) with the formats shown below. Note that the write operation is a 3-step
sequence while the read operation is only 1 step as illustrated in Figure 3. Each step in this
example test bench is 10 ns in duration.

Input file format:
w 0 10000000
w 1 00100001
w 2 00000000
w 3 00000000
r 0
r 1
r 2
r 3
e 0

Output file format:
w 0 10000000 10000000
w 1 00100001 00100001
w 2 00000000 00000000
w 3 00000000 00000000
r 0 00000001
r 1 00100001
r 2 10100100
r 3 00000110

library IEEE;
use IEEE.std_logic_1164.all;
use STD.TEXTIO.all; -- calls package with routines for reading/writing files
entity TEST is
end entity;
architecture RTL of TEST is
signal RW: std_logic; -- read/write control to MUT
signal ADD: std_logic_vector(1 downto 0); -- address to MUT

ADDR & DATIN ADDR
Write Operation Read Operation

RW RW
Figure 3. Timing Diagram for Example Test Bench Operations

ADDR=2-bits
DATIN=8-bits

RW=1-bit

 Test Bench

C. E. Stroud, ECE Dept., Auburn Univ. 3 3/11

signal DIN,DOUT: std_logic_vector(7 downto 0); -- data to/from MUT
signal STOP: std_logic := ‘0’; -- used to stop reading of vector file at end
component MUT is
port (RW: in std_logic;
 ADDR: in std_logic_vector(1 downto 0);
 DATIN: in std_logic_vector(7 downto 0);
 DATO: out std_logic_vector(7 downto 0));
end component;
begin
M1: MUT port map (RW, ADD, DIN, DOUT); -- hierarchical connection to MUT
process -- main process for test bench to read/write files
variable DAT: bit_vector(7 downto 0); -- variable for data transfer to/from files
file SCRIPT: TEXT is in "mut.vec"; -- “file pointer” to input vector file
file RESULT: TEXT is out "mut.out"; -- “file pointer” to output results file
variable L: line; -- variable to store contents of line to/from files
variable OP: character; -- operation variable (read/write)
variable AD: integer; -- address variable
begin
if (STOP = ‘0’) then

RW <= '1'; -- set RW to read
READLINE(SCRIPT,L); -- read a line from the input file
READ(L,OP); -- read the operation from the line
READ(L,AD); -- read the address from the line
if (AD = 0) then ADD <= "00";
elsif (AD = 1) then ADD <= "01";
elsif (AD = 2) then ADD <= "10";
else ADD <= "11";
end if;
if (OP = 'w') then

 READ(L,DAT); -- read data from the line
 for i in 7 downto 0 loop
 if (DAT(i) = '0') then DIN(i) <= '0';
 else DIN(i) <= '1';
 end if;
 end loop;
 RW <= '1'; -- set RW to 1 for 10 ns
 wait for 10 ns;
 RW <= '0'; -- set RW to 0 for 10 ns
 wait for 10 ns;
 RW <= '1'; -- set RW to 1 for 10 ns
 wait for 10 ns;
 WRITE(L,OP); -- write operation to output line
 WRITE(L,' '); -- write a space to output line
 WRITE(L,AD); -- write address to output line
 WRITE(L,' '); -- write a space to output line
 WRITE(L,DAT); -- writes input data to output line

 Test Bench

C. E. Stroud, ECE Dept., Auburn Univ. 4 3/11

 for i in 7 downto 0 loop
 if (DOUT(i) = '0') then DAT(i) := '0'; -- transfer DOUT to DAT
 else DAT(i) := '1';
 end if;
 end loop;
 WRITE(L,' '); -- write a space to output line
 WRITE(L,DAT); -- write DAT to output line
 WRITELINE(RESULT,L); -- write output line to output file

elsif (OP = 'r') then
 wait for 10 ns; -- wait for 10 ns to read
 WRITE(L,OP); -- write operation to output line
 WRITE(L,' '); -- write a space to output line
 WRITE(L,AD); -- write address to output line
 for i in 7 downto 0 loop
 if (DOUT(i) = '0') then DAT(i) := '0'; -- transfer DOUT to DAT
 else DAT(i) := '1';
 end if;
 end loop;
 WRITE(L,' '); -- write a space to output line
 WRITE(L,DAT); -- write DAT to output line
 WRITELINE(RESULT,L); -- write output line to output file
 else
 STOP <= ‘1’; -- will stop read/write of files when ‘e’ encountered
 wait for 10 ns; -- wait for 10 ns to read
 end if;
end if;
end process;
end architecture;

Note that you must be careful about trying to open and read results or write vector files
while ModelSim is open. The results file may not be closed until you exit ModelSim.
Similarly, edits made to the input vector file may not be transferred to ModelSim without
closing out the file and/or simulation, and restarting ModelSim.

An alternative to the “STOP” approach used in the example above is the following
construct used in the process:

process -- main process for test bench to read/write files

variable and file declarations
begin
while not (endfile(script)) loop
 do test bench stuff
end loop;
end process;

 Test Bench

C. E. Stroud, ECE Dept., Auburn Univ. 5 3/11

assert statements check to see if a condition is true or not and displays an error message

general format:

assert BOOLEAN-EXPRESSION
 report “STRING” -- reports only if Boolean-expression is false
 severity SEVERITY-LEVEL ; -- severity is optional

3 severity-levels: note, warning, error, failure (lowest to highest) –action taken depends
on simulator (typically “note” and “warning” keep running while “error” and “failure”
halt simulation)

