
 VHDL IDENTIFIERS, SIGNALS, & ATTRIBUTES

C. E. Stroud, ECE Dept., Auburn Univ. 1 8/06

Identifier (naming) rules:
 Can consist of alphabet characters, numbers, and underscore
 First character must be a letter (alphabet)
 Last character cannot be an underscore
 Consecutive underscores are not allowed
 Upper and lower case are equivalent (case insensitive)
 VHDL keywords cannot be used as identifiers

Reserved Keywords:
abs downto library postponed srl
access else linkage procedure subtype
after elsif literal process then
alias end loop pure to
all entity map range transport
and exit mod record type
architecture file nand register unaffected
array for new reject units
assert function next rem until
attribute generate nor report use
begin generic not return variable
block group null rol wait
body guarded of ror when
buffer if on select while
bus impure open severity with
case in or signal xnor
component inertial others shared xor
configuration inout out sla
constant is package sll
disconnect label port sra

Data Types for ports and signals
BIT and BIT_VECTOR:
 BIT_VECTOR is an array of BITs
 Can have values: 0 1 Note: 0 is initialization value (first value is initial value)
STD_LOGIC and STD_LOGIC_VECTOR:
 STD_LOGIC_VECTOR is and array of STD_LOGICs
 Can have values: U undefined logic value
 X forcing unknown (not don’t care)
 0
 1
 Z high impedance (tri-state)
 W weak unknown
 L weak 0
 H weak 1
 - don’t care
 Note: U is initialization value (first value is initial value)

 VHDL IDENTIFIERS, SIGNALS, & ATTRIBUTES

C. E. Stroud, ECE Dept., Auburn Univ. 2 8/06

To use STD_LOGIC and STD_LOGIC_VECTOR, include the following at beginning model:
library IEEE;
use IEEE.std_logic_1164.all;

Some other commonly used IEEE library packages include:
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

These packages allow bit vector arithmetic – very useful for counters, etc.
example: COUNT <= COUNT + 1; -- increments COUNT value

Signals represent wires or outputs of gates, FFs, etc. Ports (ins, outs, inouts) in the entity are

signals. Internal signals are often needed in complex models and are declared in the
architecture description as follows:

architecture architecture_name of entity_name is
 signal signal_name: type;
 : : :
 signal signal_name: type;
begin
 :
end architecture architecture_name;

The signal type can be bit, bit_vector, std_logic, or std_logic_vector
Signals can be initialized to a beginning value at the declaration BUT this is meaningless to

synthesis tools since no hardware mechanism exists to produce this “power-up” init value
Example: signal COUNT: bit_vector(3 downto 0) := “0101”;
 here := means immediate assignment and used to indicate an initial value

but the normal assignment operator is <=
Example: COUNT <= “0101”;
 this does correspond to synthesizable logic and will be recognized by tools
Attributes provide information about items such as signals. The most important signal attribute

is ‘event which yields a Boolean value of true if an event has just occurred on the signal
to which the attribute is applied an event on a signal means a change in value
signal’event allows us to condition on a transition for FFs

Example:
entity DFF is
 port (CK, D: in bit;
 Q: out bit);
end entity DFF;
architecture AUFB of DFF is
begin
process (CK) begin
 if (CK’event and CK=’1’) then Q <= D; -- occurs only on the rising edge of CK
 end if;
end process;
end architecture AUFB;

