HDL – Hardware Description Language

Two principle HDLs currently used:

- VHDL VHSIC Hardware Description Language
 VHSIC Very High Speed Integrated Circuit
 gate level through system level design and verification
- Verilog is other main HDL
 Primarily targeted for design of ASICs
 ASIC Application Specific Integrated Circuit

Synthesis –conversion of an HDL description to gate level design *Current HDLs owe their success to synthesis tools!!!*

Benefits of HDLs:

- Early design verification via high level design verification
- Evaluation of alternative architectures
- Top-down design (w/synthesis)
- Reduced risk to project due to design errors
- Design capture (w/synthesis & independence of implementation media)
- Reduced design/development time & cost (w/synthesis)
- Base line testing of lower level design representations example: gate level or register level design
- Ability to manage/develop complex designs
- Hardware/software co-design
- Documentation of design (depends on quality of designer comments)

Designer concerns about HDLs:

- Loss of control of detailed design
- Synthesis is inefficient
- Quality of synthesis varies between synthesis tools
- Synthesized logic does not perform the same as the HDL
- Learning curve associated with HDLs & synthesis tools

INTRODUCTION OF HDLs IN THE DESIGN PROCESS

Basic Domains of HDLs:

- Structural components and their interconnections (netlist)
- Behavioral describes I/O responses & behavior of design
- Register Transfer Level (RTL) a data flow description at the register level

Design space issues (may be critical to project or traded-off):

- Area (chip area, how many chips, how much board space)
- Speed/performance
- Cost of product
- Production volume
- Design time (to meet market window & development cost)
- Risk to project (working, cost-effective product on schedule)
- Reusable resources (same circuit different modes of operation)
- Implementation media
- Technology limits
- Designer experience
- CAD tool availability and capabilities

Requirements DoD placed on VHDL in mid 80s:

- An HDL for:
 - 1. Design & description of hardware
 - 2. Simulation & documentation (with designer comments)
 - 3. Design verification & testing
- Concurrency to accurately reflect behavior & operation of hardware—all hardware operates concurrently (as a result, all VHDL simulation is event-driven)
- Hierarchical design essential for efficient, low-risk design
- Library support for reuse and previously verified components
- Generic design
 - 1. independent of implementation media
 - 2. can be optimized for area or performance
- Timing control to assign delays for more accurate simulation
- Portability between simulators & synthesis tools (not always true)

Typical Product Development & Design Verification Cycle Using HDLs

