
 VHDL ENTITIES, ARCHITECTURES, AND PROCESS

C. E. Stroud, ECE Dept., Auburn Univ. 1 8/06

VHDL models consist of two major parts:
1) Entity declaration – defines the I/O of the model
2) Architectural body – describes the operation of the model

Format of Entity declaration:
entity entity_name is
 port(signal_name(s): mode signal_type;
 :
 signal_name(s): mode signal_type);
end entity entity_name;

signals of the same mode and signal_type can be grouped on 1 line
MODE describes the direction data is transferred through port
 in – data flows into the port
 out – data flows out of port only
 buffer – data flows out of port as well as internal feedback
 note: can be used for any output regardless of feedback
 inout – bi-directional data flow into and out of port
SIGNAL_TYPE defines the data type for the signal(s)
 bit – single signals that can have logic values 0 and 1
 bit_vector – bus signals that can have logic values 0 and 1
 std_logic – same as bit but intended for standard simulation
 and synthesis (IEEE standard 1164)
 std_logic_vector – same as bit_vector but IEEE standard for
 simulation and synthesis
note that all vectors must have a range specified
 example for a 4 bit bus: bit_vector (3 downto 0)
 or std_logic_vector (3 downto 0)
also note that there are many other types we will discuss later
In order to use std_logic and std_logic_vector we must include the library and package

usage declarations in the VHDL model before the entity statement as follows:
library IEEE;
use IEEE.std_logic_1164.all;
Values for std-logic:
U un-initialized (undefined logic value)
X forced unknown logic value
0
1
Z high impedance (tri-state)
W weak unknown
L weak 0
H weak 1
- don’t care value (for synthesis minimization)

Comments in VHDL are of the following format, the comment begins with the double
dashes (no space between them) and continues to the end of the current line
-- this is a syntactically correct VHDL comment

 VHDL ENTITIES, ARCHITECTURES, AND PROCESS

C. E. Stroud, ECE Dept., Auburn Univ. 2 8/06

Entity example:
a 4 –bit full adder with Carry-in & Carry-out

entity ADDER is
 port (Cin: in bit;
 A, B: in bit_vector (3 downto 0);
 Sum: out bit_vector (3 downto 0);
 Cout: out bit);
end entity ADDER;

same entity declaration using std_logic & std_logic_vector:

library IEEE;
use IEEE.std_logic_1164.all;
entity ADDER is
 port (Cin: in std_logic;
 A, B: in std_logic_vector (3 downto 0);
 Sum: out std_logic_vector (3 downto 0);
 Cout: out std_logic);
end entity ADDER;

Format for Architecture body (in its simplest form):
architecture architecture_name of entity_name is
begin
 :
end architecture architecture_name;

Notes: entity and architecture in the end statement is optional.
The actual behavior of the VHDL model is described between the begin and end

statements
In order to give and example architectural body we must consider some constructs that

allow us to describe model’s behavior. We first consider the process statement
(very commonly used)

Format for process statement:
process_label: process (sensitivity_list)
begin
 :
end process process_label;

note that the process_label is optional while the sensitivity list is required to
implement the correct simulation behavior

Sensitivity list – list of signals that cause the process to execute
Within the process each statement is executed sequentially and only sequential statements

can be used in a process (more on what are sequential statements later but for now
just think of sequential execution of a typical program)

Adder

A

B

Cin

Cout

Sum
4

4

4

 VHDL ENTITIES, ARCHITECTURES, AND PROCESS

C. E. Stroud, ECE Dept., Auburn Univ. 3 8/06

Now we need to look at a sequential statement construct in order for us to complete a
process statement as well as an architecture body. One of the most commonly
used is the if-then-else statement which we consider here

Format for if-then-else statement:
if condition then
 sequence of statements
elsif condition then
 sequence of statements
else
 sequence of statements
end if;

-- active high level sensitive D-latch with active low reset
library IEEE;
use IEEE.std_logic_1164.all;
entity LAT is
 port(D, EN, RST: in std_logic;
 Q: out std_logic);
end entity LAT;
architecture LALA of LAT is
begin
process (D,EN,RST)
begin
 if (RST = ‘0’) then
 Q <= ‘0’; -- here we reset the latch when RST=0
 elsif (EN = ‘1’) then
 Q <= D; -- here we pass D to Q when EN=1
 end if; -- note that no else implies storage state
end process;
end architecture LALA;

A lot of code for a silly little latch? What about a whole register (say 4 bits)?

-- active high level sensitive D-latch register with active low reset
library IEEE;
use IEEE.std_logic_1164.all;
entity REG is
 port(EN, RST: in std_logic;
 D: in std_logic_vector (3 downto 0);
 Q: out std_logic_vector (3 downto 0));
end entity REG;
architecture LALA of REG is
begin
process (D,EN,RST)
begin

D
Q

LAT
EN

RST

D
Q

REG
EN

RST

4
4

 VHDL ENTITIES, ARCHITECTURES, AND PROCESS

C. E. Stroud, ECE Dept., Auburn Univ. 4 8/06

 if (RST = ‘0’) then
 Q <= “0000”; -- reset the register when RST=0
 elsif (EN = ‘1’) then
 Q <= D; -- here we pass D to Q when EN=1
 end if; -- no else implies storage state
end process;
end architecture LALA;

Notes: With very little change in VHDL code we have a whole register
In the previous example we use ‘0’ to pass a single bit value to Q but here we use “0000”

to pass a vector value (string) to Q. The assignment operator for signals is <=.
The order of the if-eslif-else sequence establishes the precedence of the operations by the

input signals (what take priority)
Passing data between bit_vectors is the same as between bits (but note that the size and

ordering was the same for both D and Q)
What if we have a bunch of registers that work the same but have different sizes? Can

one size fit all? Behold the power of VHDL! (via the generic)
The generic statement is like the port statement and is in the entity but it allows us to

specify (and change) the size of busses

Format for generic statement:
generic (identifier: type [:= default value];
 :
 identifier: type [:= default value]);

Example: and N-bit register
-- active level sensitive D-latch based register with active low reset
library IEEE;
use IEEE.std_logic_1164.all;
entity REG is
 generic (N: integer := 4)
 port(EN, RST: in std_logic;
 D: in std_logic_vector (N-1 downto 0);
 Q: out std_logic_vector (N-1 downto 0));
end entity REG;
architecture BIGLALA of REG is
begin
process (D,EN,RST)
begin
 if (RST = ‘0’) then
 Q <= (others => ‘0’); -- reset the register when RST=0
 elsif (EN = ‘1’) then
 Q <= D; -- here we pass D to Q when EN=1
 end if; -- no else implies storage state
end process;
end architecture BIGLALA;

D
Q

REG
EN

RST

N
N

 VHDL ENTITIES, ARCHITECTURES, AND PROCESS

C. E. Stroud, ECE Dept., Auburn Univ. 5 8/06

Notes on the generic statement:
Here we are using a new type (the integer type) for our identifier N and the immediate

assignment operator for an integer is :=
We have included the optional assignment of a default value (:= 4). For synthesis of an

individual VHDL model specifying a default value is needed
But multiple calls to the same parameterized model using generics can specify any size

for each instantiation of the model at the next higher level of hierarchy and the
default value will be over-ridden

The moral to the BIGLALA story:
Whenever you can parameterize a VHDL model, you should do so!!!
It allows easier design verification of a smaller function (use small generic values but

verify different generic values)
It promotes reuse of designs that have been verified and proven to work!!! This reduces

design errors!!!
It also facilitates optimized synthesis for area and/or performance when you have taken

the time to do such optimization!!!
Bottom line: it makes you a better designer!!!

