
 VHDL CONSTRUCTS

C. E. Stroud, ECE Dept., Auburn Univ. 1 8/04

Sequential Statements:
if-then-else
 general format: example:
 if (condition) then if (S = “00”) then
 do stuff Z <= A;
 elsif (condition) then elsif (S = “11”) then
 do more stuff Z <= B;
 else else
 do other stuff Z <= C;
 end if; end if;
elsif and else clauses are optional
BUT incompletely specified if-then-else (no else) implies memory element

case-when
 general format: example:
 case expression is case S is
 when value => when “00” =>
 do stuff Z <= A;
 when value => when “11” =>
 do more stuff Z <= B;
 when others => when others =>
 do other stuff Z <= C;
 end case; end case;

for-loop
general format: example:
[label:] for identifier in range loop init: for k in N-1 downto 0 loop
 do a bunch of junk Q(k) <= ‘0’;
end loop [label]; end loop init;
 note: variable k implied in for-loop and does not need to be declared

while-loop
general format: example:
[label:] while condition loop init: while (k > 0) loop
 do silly stuff Q(k) <= ‘0’
end loop [label]; k := k – 1;
 end loop init;
 note: variable k must be declared as variable in process (between
 sensitivity list and begin with format:
 variable k: integer := N-1;

 VHDL CONSTRUCTS

C. E. Stroud, ECE Dept., Auburn Univ. 2 8/04

Concurrent Statements:

logical operators with signal assignment <= example: Z <= A and B;

when-else
general format: example:
expression when condition else Z <= A when S = “00” else
expression when condition else B when S = “11” else
expression when others; C;
note: “when others” maybe redundant and incompatible with some tools

with-select-when
general format: example:
with selection select with S select
expression when condition, Z <= A when “00” ,
expression when condition, B when “11” ,
expression when others; C when others;

Signal assignments in a process:
 All expressions based on current value of signals
 (right-hand side of <=, values at start of process execution)
 Assigned signals updated at end of process execution
Example:
 process (CK) begin
 D <= Q xor CIN;
 if (CK’event and CK = ‘1’) then
 Q <= D;
 end if;
 COUT <= Q xor CIN;
 end process;

Case 1: sensitivity list consists only of CK (no other implied signals)
on rising clock edge, Q gets value of D based on Q and CIN from previous
 execution of process
if CIN is available prior to falling edge of CK then count works as expected
otherwise, it does not
also COUT is updated on falling edge of CK and not when Q changes
Case 2: sensitivity list consists of CK, CIN and Q (or CIN and Q implied)
D and COUT updated anytime Q or CIN changes
on rising clock edge, Q gets updated value of D & count works as expected

 VHDL CONSTRUCTS

C. E. Stroud, ECE Dept., Auburn Univ. 3 8/04

Signal assignments in a concurrent statement:
 Like a process with implied sensitivity list (right-hand side of <=)
 ∴ multiple concurrent statements work like multiple 1-line processes
 updates assigned signal whenever right-hand has event
Example: D <= Q xor CIN;
 COUT <= Q xor CIN;
 process (CK) begin
 if (CK’event and CK = ‘1’) then
 Q <= D;
 end if;
 end process;

D and COUT updated anytime Q or CIN changes
on rising clock edge, Q gets updated value of D & count works as expected
same as if we put the 2 concurrent statements in process with Q & CIN in
 sensitivity list

Initialization:
 All processes (and concurrent statements) evaluated once
 then again and again until there are no events in sensitivity list
 If explicit initialization is not defined (using := assignment operator)
 then a bit is assigned ‘0’ and a std_logic is assigned ‘U’
 When no events happen for a given process sensitivity list then that
 process is suspended

Simulation cycle:
1. Time is advanced until next entry in time queue where signals are to be

updated (for example, PIs) which cause events on these signals
2. A simulation cycle starts at that point in time and processes & concurrent

statements “sensitive” to events (during the current simulation time) on
those signals will be executed

3. Simulation times for subsequent simulation cycles are determined and
scheduled based on internal signals being updated from processes or
concurrent statements

Note: we will talk about specifying delays later, right now we consider only
delta (δ) delays = infinitesimal delays

4. If there are any δ delay time queues go to Step 2, else go to Step 1
Examples:
 Z <= X after 5ns; -- specified delay scheduled as entry in time queue

 Z <= X; -- δ delay scheduled as entry in δ delay time queue

