
VHDL Testbench Design

Textbook chapters 2.19, 4.10-4.12, 9.5

The Test Bench Concept

Elements of a VHDL/Verilog testbench
 Unit Under Test (UUT) – or Device Under Test (DUT)
 instantiate one or more UUT’s

 Stimulus of UUT inputs
 algorithmic
 from arrays
 from files

 Checking of UUT outputs
 assertions
 write to files

Instantiating the UUT
-- 8 bit adder testbench
entity adder_bench is -- no top-level I/O ports
end adder_bench;
architecture test of adder_bench is
component adder is -- declare the adder component
port (

X,Y: in std_logic_vector(7 downto 0);
Z: out std_logic_vector(7 downto 0)

);
signal A,B,Sum: std_logic_vector(7 downto 0); --internal signals
begin
UUT: adder port map (A,B,Sum); --instantiate adder as UUT

Algorithmic generation of stimulus
-- Generate test values for an 8-bit adder inputs A & B
process begin

for m in 0 to 255 loop -- 256 addend values
A <= std_logic_vector(to_UNSIGNED(m,8)); -- apply m to A
for n in 0 to 255 loop -- 256 augend values

B <= std_logic_vector(to_UNSIGNED(n,8)); -- apply n to B
wait for T ns; -- allow time for addition
assert (to_integer(UNSIGNED(Sum)) = (m + n)) – expected sum

report “Incorrect sum”
severity NOTE;

end loop; end loop;
end process;

adder

A B

Sum

Check results with “assertions”
-- Assert statement checks for expected condition
assert (A = (B + C)) -- expect A = B+C (any boolean condition)

report “Error message”
severity NOTE;

 Match data types for A, B, C
 Print “Error message” if assert condition FALSE

(condition is not what we expected)
 Specify one of four severity levels:

NOTE, WARNING, ERROR, FAILURE
 Simulator allows selection of severity level to halt simulation
 ERROR generally should stop simulation
 NOTE generally should not stop simulation

Stimulating clock inputs
-- Simple 50% duty cycle clock
clk <= not clk after T ns; -- T is constant or defined earlier

-- Clock process, using “wait” to suspend for T1/T2
process begin

clk <= ‘1’; wait for T1 ns; -- clk high for T1 ns
clk <= ‘0’; wait for T2 ns; -- clk low for T2 ns

end process;

-- Alternate format for clock waveform
process begin

clk <= ‘1’ after LT, ‘0’ after LT + HT;
wait for LT + HT;

end process;
LT

HT

T1
T2

Sync patterns with clock transitions

A <= ‘0’; -- schedule pattern to be applied to input A
B <= ‘1’; -- schedule pattern to be applied to input B
wait for T1; -- time for A & B to propagate to flip flop inputs
Clock <= ‘1’; -- activate the flip-flop clock
wait for T2; -- time for output C to settle
assert C = ‘0’ -- verify that output C is the expected value

report “Error in output C”
severity ERROR;

wait for T3; -- wait until time for next test period

Clock

Apply
inputs A,B

Active
clock

transition

Test period

T1

Check
output C

T2 T3

Sync patterns with various signals

-- Test 4x4 bit multiplier algorithm
process begin
for m in 0 to 15 loop;

A <= std_logic_vector(to_UNSIGNED(m,4)); -- apply multiplier
for n in 0 to 15 loop;

B <= std_logic_vector(to_UNSIGNED(n,4)); -- apply multiplicand
wait until CLK’EVENT and CLK = ‘1’; -- clock in A & B
wait for 1 ns; -- move next change past clock edge
Start <= ‘1’, ‘0’ after 20 ns; -- pulse Start signal
wait until Done = ‘1’; -- wait for Done to signal end of multiply
wait until CLK’EVENT and CLK = ‘1’; -- finish last clock
assert P = (A * B) report “Error” severity WARNING; -- check product

end loop;
end loop;

end process;

Done

Start

Apply A,B Pulse Start Check Result
When Done

Checking setup/hold time constraints

-- Figure 8-6 in the Roth textbook
check: process
begin

wait until (clk’event and CLK = ‘1’);
assert (D’stable(setup_time))

report “Setup time violation”
severity ERROR;

wait for hold_time;
assert (D’stable(hold_time))

report “Hold time violation”
severity ERROR;

end process check;

D

CLK

Q

Qb

tsetup

thold
CLK

D should be “stable” for tsetup prior to the clock edge
and remain stable until thold following the clock edge.

-- Setup time Tsu for flip flop D input before rising clock edge is 2ns
assert not (CK’stable and (CK = ‘1’) and not D’stable(2ns))

report “Setup violation: D not stable for 2ns before CK”;
-- DeMorgan equivalent
assert CK’stable or (CK = ‘0’) or D’stable(2ns)

report “Setup violation: D not stable for 2ns before CK”;

Testbench for a modulo-7 counter
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;

ENTITY modulo7_bench is end modulo7_bench;

ARCHITECTURE test of modulo7_bench is
component modulo7
PORT (reset,count,load,clk: in std_logic;

I: in std_logic_vector(2 downto 0);
Q: out std_logic_vector(2 downto 0));

end component;
for all: modulo7 use entity work.modulo7(Behave);
signal clk : STD_LOGIC := '0';
signal res, cnt, ld: STD_LOGIC;
signal din, qout: std_logic_vector(2 downto 0);

begin
-- instantiate the component to be tested
UUT: modulo7 port map(res,cnt,ld,clk,din,qout);

Alternative
to “do” file

Continue on
next slide

Testbench: modulo7_bench.vhd

clk <= not clk after 10 ns;

P1: process
variable qint: UNSIGNED(2 downto 0);
variable i: integer;

begin
qint := "000";
din <= "101"; res <= '1';
cnt <= '0'; ld <= '0';
wait for 10 ns;
res <= '0'; --activate reset for 10ns
wait for 10 ns;
assert UNSIGNED(qout) = qint

report "ERROR Q not 000"
severity WARNING;

res <= '1'; --deactivate reset
wait for 5 ns; --hold after reset
ld <= '1'; --enable load
wait until clk'event and clk = '1';

qint := UNSIGNED(din); --loaded value
wait for 5 ns; --hold after load
ld <= '0'; --disable load
cnt <= '1'; --enable count
for i in 0 to 20 loop

wait until clk'event and clk = '1';
assert UNSIGNED(qout) = qint

report "ERROR Q not Q+1"
severity WARNING;

if (qint = "110") then
qint := "000"; --roll over

else
qint := qint + "001"; --increment

end if;
end loop;

end process;

Print message if incorrect result

qint = expected outputs of UUT

0 10 20 30

Apply
inputs Trigger

counter

Check output
before next

change

5

Test vectors from an array
-- Can be used if vector generation is not “algorithmic”

type vectors is array (1 to N) of std_logic_vector(7 downto 0);
signal V: vectors := -- initialize vector array

(
"00001100 “, -- pattern 1
"00001001“, -- pattern 2
"00110100", -- pattern 3
. . . .

"00111100“ -- pattern N
);

signal A: std_logic_vector(7 downto 0);

begin
UUT: somemodule port map (in1 => A, …..);

process
begin

for i in 0 to N loop
A <= V(i); -- apply ith vector to A

Also use to initialize
“memory” contents.

Reading test vectors from files
use std.textio.all; -- Contains file/text support
architecture m1 of bench is begin

signal Vec: std_logic_vector(7 downto 0); -- test vector
process

file P: text open read_mode is "testvecs"; -- test vector file
variable LN: line; -- temp variable for file read
variable LB: bit_vector(31 downto 0); -- for read function

begin
while not endfile(P) loop -- Read vectors from data file

readline(P, LN); -- Read one line of the file (type “line”)
read(LN, LB); -- Get bit_vector from line
Vec <= to_stdlogicvector(LB); --Vec is std_logic_vector

end loop;
end process;

Memory testbench design
 Basic testbench operation:
 Step 1: Write data patterns to each address in the memory
 Step 2: Read each memory address and verify that the data

read from the memory matches what was written in Step 1.
 Step 3: Repeat Steps 1 and 2 for different sets of data

patterns.

Memory read and write timing

ADDR

DATIN

ADDR

DATAOUT

Write Operation Read Operation

RW RW

1. Apply patterns to ADDR and DATAIN
2. After a short delay, pulse RW (low)
3. Data captured in memory on rising

edge of RW – should also be on DATAOUT

1. Apply patterns to ADDR
2. Leave RW high (for read)
3. DATAOUT from memory

after a short delay

ADDR
DATAIN
RW

DATAOUT

Memory testbench process general format
process begin

RW <= ‘1’; -- default level for RW
-- Write data to all N memory locations (k = # address bits)
for A in 0 to N loop

ADDR <= std_logic_vector(to_unsigned(A,k)); -- convert A to ADDR type
DATAIN <= next_data; -- data to be written to address A
RW <= ‘0’ after T1 ns, ‘1’ after T2 ns; -- pulse RW from 1-0-1
wait for T3 ns; -- wait until after RW returns to 1

end loop;
-- Read data from all N memory locations and verify that data matches what was written
for A in 0 to N loop

ADDR <= std_logic_vector(to_unsigned(A,k)); -- convert A to ADDR type
wait for T4 ns; -- allow memory time to read and provide data
assert DATAOUT = expected_data -- did we read expected data?

report “Unexpected data”
severity WARNING;

end loop;
end process;

We need some method for determining data patterns to be written.

Memory testbench input/output files

Input file format:
w 0 10000000
w 1 00100001
w 2 00000000
w 3 00000000
r 0
r 1
r 2
r 3
e 0

Output file format:
w 0 10000000 10000000
w 1 00100001 00100001
w 2 00000000 00000000
w 3 00000000 00000000
r 0 00000001
r 1 00100001
r 2 10100100
r 3 00000110

We can provide a sequences of operations, addresses, and data from a text file,
and write testbench results to another text file, using the VHDL textio package.

Operation Address Data
Black: Command from input file
Green: Data read on DOUT

Data read on DOUT

Operations are write (w), read (r), and end (e).

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;
use STD.TEXTIO.all; -- package with routines for reading/writing files

entity TEST is
end entity;

architecture RTL of TEST is
signal RW: std_logic; -- read/write control to MUT
signal ADD: std_logic_vector(1 downto 0); -- address to MUT
signal DIN,DOUT: std_logic_vector(7 downto 0); -- data to/from MUT
signal STOP: std_logic := ‘0’; -- stop reading vector file at end
component Memry is

port (RW: in std_logic;
ADDR: in std_logic_vector(1 downto 0);
DATIN: in std_logic_vector(7 downto 0);
DATO: out std_logic_vector(7 downto 0));

end component;
begin
MUT: Memry port map (RW, ADD, DIN, DOUT); -- instantiate memory component

-- main process for test bench to read/write files
process

file SCRIPT: TEXT is in "mut.vec"; -- “file pointer” to input vector file
file RESULT: TEXT is out "mut.out"; -- “file pointer” to output results file
variable L: line; -- variable to store contents of line to/from files
variable OP: character; -- operation variable (read/write/end)
variable AD: integer; -- address variable
variable DAT: bit_vector(7 downto 0); -- variable for data transfer to/from files

begin
if (STOP = ‘0’) then

RW <= '1'; -- set RW to read
READLINE(SCRIPT,L); -- read a line from the input file
READ(L,OP); -- read the operation from the line
READ(L,AD); -- read the address from the line
ADD <= std_logic_vector(to_unsigned(AD,2); -- apply address to memory

(next slides for read and write operations)

-- Memory write operation
if (OP = 'w') then

READ(L,DAT); -- read data from the input line
DIN <= to_std_logic_vector(DAT);
RW <= '1‘, ‘0’ after 10 ns, ‘1’ after 20 ns; -- pulse RW 0 for 10 ns
wait for 30 ns;
WRITE(L,OP); -- write operation to output line
WRITE(L,' '); -- write a space to output line
WRITE(L,AD); -- write address to output line
WRITE(L,' '); -- write a space to output line
WRITE(L,DAT); -- writes input data to output line
DAT := to_bitvector(DOUT); -- DOUT should match DAT written
WRITE(L,' '); -- write a space to output line
WRITE(L,DAT); -- write DAT to output line
WRITELINE(RESULT,L); -- write output line to output file

-- Memory read operation
elsif (OP = 'r') then

wait for 10 ns; -- wait for 10 ns to read
DAT := to_bitvector(DOUT);-- convert DOUT to BIT_VECTOR
WRITE(L,OP); -- write operation to output line
WRITE(L,' '); -- write a space to output line
WRITE(L,AD); -- write address to output line
WRITE(L,' '); -- write a space to output line
WRITE(L,DAT); -- write DAT to output line
WRITELINE(RESULT,L); -- write output line to output file

-- Stop operation
else

STOP <= ‘1’; -- stop read/write of files when ‘e’ encountered
wait for 10 ns; -- wait for 10 ns to read

end if;
end if;

end process;
end architecture;

	VHDL Testbench Design
	The Test Bench Concept
	Elements of a VHDL/Verilog testbench
	Instantiating the UUT
	Algorithmic generation of stimulus
	Check results with “assertions”
	Stimulating clock inputs
	Sync patterns with clock transitions
	Sync patterns with various signals
	Checking setup/hold time constraints
	Testbench for a modulo-7 counter
	Testbench: modulo7_bench.vhd
	Test vectors from an array
	Reading test vectors from files
	Memory testbench design
	Memory read and write timing
	Memory testbench process general format
	Memory testbench input/output files
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22

